
AD-A267 114

ARL-TR- 14 AR-007-135

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORY

MELBOURNE, VICTORIA

Technical Report 14

A SOFTWARE INTERFACE FOR THE
ARL WIND TUNNEL DATA ACQUISITION SYSTEM

by DTIC
B.D. FAIRLIE E iC,,
S.S.W. LAM "JUL 23 19931)

\ - Approved for public release.

© COMMONWEALTH OF AUSTRALIA 1993

MARCH 1 QQA
-~___.o___ 0•- 16621

This work Is copyright. Apart from any fair dealing for the purpose of
study, research, criticism or review, as permitted under the Copyright Act,
no part may be reproduced by any process without written permission.
Copyright is the responsibility of the Director Publishing and Marketing,
AGPS. Enquiries should be directed to the Manager, AGPS Press,
Australian Government Publishing Service, GPO Box 84, CANBERRA ACT
2601.

THE UNITED STATrS NATION.AL
TECHNICAL INFORMATION SERVDCE

IS AUTHORISED TO

hiPRODU'-c AND SELL THIS PFPORT

AR-007-135

DEPARTMENT OF DEFENCE!

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATIONAERONAUTICAL RESEARCH LABORATORY

Technical Report 14

A SOFTWARE INTERFACE FOR THE
ARL WIND TUNNEL DATA ACQUISTION SYSTEM

by

B.D. FAIRLIE
SS.W. LAM

SUMMARY

A software interface for the data acquisition system has been developed on a MicroVAX II
computer for the Transonic and Low Speed wind tunnels at ARL. The software is responsible
for handling instrumentation control and data transfer requests between the data acquisition
software and the parallel data bus via a DRVi1 parallel I10 interface adapter. Access to the
DRVi1 registers is effected by direct mapping of the Q22-Bus I1/0 page to program
variables, giving fast and efficient transfer of data to and from the parallel data bus. Up to
five processes may access the parallel data bus at one time via this software interface thus
allowing great flexibility in the development of data acquisition software. This report details
the necessary programming steps which must be included in data acquisition software to
access the parallel data bus via the software interface.

DSTOA
AUST RALIA

© COMMONWEALTH OF AUSTRALIA 1993

POSTAL ADDRESS: Director, Aeronautical Research Laboratory,
W06 Lorimer Street, Fishermens Bend, 3207

Victoria, Australia.

CONTENTS

1 INTRODUCTION 1

2 THE HARDWARE INTERFACE 1

3 A DRVlI "DEVICE DRIVER" 2

3.1 Mapping The Input/Output Page 3

3.2 Connecting To Interrupts 5

3.3 Subroutine DRINIT 8

4 SOFTWARE I/O INTERFACE PROCESS - DIGIO 9

4.1 Requirements Of The I/O Interface Process 9

4.2 The DIGIO Mailbox................................. 11

4.3 The DIGIO Mailbox Message.......................... 12

4.4 The DIGIO Global Common Block. 14

4.4.1 Bus Module Usage Tables.. 14

4.4.2 Data Arrays And Usage Indicators 15

4.4.3 Display Process Activity Indicator 16

4.4.4 Linking To The Global Common Block................ 16

4.5 Module Addresses 17

4.6 Data Transfer Complete/Error Notification..................... 18

4.7 Master Reset 19

5 SUMMARY OF REQUIREMENTS FOR A PROCESS COMMU-
NICATING WITH THE BUS VIA DIGIO 20

5.1 Definition Of Variables................................ 20

5.2 Connecting To DIGIOabls 22

5.3 Transferring Data Via DIGIO 23

5.4 Treating Errors 26
5.5 Disconnecting From DIGIO 27

6 CONCLUSIONS 2T

REFERENCES 29

APPENDIX

A MODIFICATIONS TO THE DRV11 CIRCUIT BOARD 30

i

B LISTING OF THE INCLUDE FILE DIGIO.INCLUDE.FOR 31

C LISTING OF THE INCLUDE FILE DIGIO_..DEFS.FOR 32

D LISTING OF THE SUBROUTINE DR-INIT.FOR 33

E LIST OF BUS ADDRESSES IN LOW SPEED WIND TUNNEL 36

F LIST OF BUS ADDRESSES IN VARIABLE PRESSURE TRAN-
SONIC WIND TUNNEL 41

DISTRIBUTION LIST

DOCUMENT CONTROL DATA

Aooession For

KTIS (kRA&I l
DTIC 'AB 0

l ix i.. ribvio

D1 71J •, " i,:,- • .- :,) An

Awn1dablity Codes
, W• 11 t 4-,'or-

t. ~v 1

1 INTRODUCTION

The use of computers for data acquisition and analysis in wind tunnels at the Aero-
nautical Research Laboratory (ARL) began in the early 1960s. The early Transonic
Wind Tunnel (VPT) instrumentation was built around a Digital Equipment Corpora-
tion (DEC') PDP'-8/I computer and automated much of the testing procedure and
data analysis. This system was in operation from 1967 until the late 1980s by which
time the PDP-8/I computer had well and truly reached the end of its life. It was then
replaced by a DEC MicroVAX'IH micro-computer. Much of the instrumentation that
was built around the PDP-8/I was also replaced.

In the Subsonic Wind Tunnel (LSWT), up until the 1960s analysis of data was carried
out in an off-line batch operation on an external computer. In the early 1970s the first
on-line data acquisition system was installed, which collected data from selected data
sources in a pre-arranged sequence. The data was subsequently analysed off-line on
the central site computer. Later, a serial line connecting the system to the central site
computer allowed data to be processed in "real-time" and the results of the test dis-
played on a teruinal screen almost immediately after the data had been collected. In
1982, a dedicated DEC PDP-11/44 mini-computer was installed for the sole purpose
of wind tunnel data acquisition and processing, and tunnel control. Comprehensive
software has been written and developed over the years to take advantage of the com-
puting power available on this dedicated system. Up until the late 1980s data were,
however, still being collected via a relatively slow and cumbersome "serializer" which
had become outdated and unreliable.

To maintain the productivity and quality of the work that has been carried out in
these wind tunnels, a new data acquisition system based on microprocessor technology
was designed at ARL and installed in both tunnels. The new system comprises of
several microprocessor based instrumentation modules (slave modules) connected to a
dedicated master (host) computer via a bi-directional differential parallel data bus also
developed at ARL [1]. Reference [1] describes this system and reasons for selecting
a master slave system with the intelligence distributed across the bus. This report
describes the software that provides an interface between the parallel data bus and
the data acquisition programs which run on the master computer. The software is
written in VAX' FORTRAN but the ideas and logic could readily be adopted to other
high level computer languages.

2 THE HARDWARE INTERFACE

Communication between the MicroVAX II computer and the tunnel instrumentation
modules is provided by a bi-directional differential parallel (BDP) bus system with
appropriate interfaces as shown in Figure 1. The BDP data bus is a 16-bit wide bus
that provides input, output, control and addressing functions. It operates in a mas-
ter/slave format in which the master initiates all traffic on the address bus. It allows
input and output to be sent to or received from any individual tunnel instrumenta-
tion module (slave), in any order, with the timing controlled by the MicroVAX II
computer (master). The slave modules cannot address the master, which eliminates
the possibility of bus hang-ups caused by two or more modules activating the bus
simultaneously. However, the slaves can signal the master, requesting its attention

'DEC, PDP, MicroVAX and VAX are regsatered trademarks of Digital Equipmeat Corporation

I

via a common error/flag line. The master's attention is requested to warn of an error,
such as invalid data, to indicate that data gathering has been completed or that a
control function setting has been finalized.

The parallel input/output interface between the Q22-Bus 2 of the MicroVAX II com-
puter and the wind tunnel data bus is provided by a DEC DRV11 General Device
Interface Adapter. There are several variants of the DRV11 Adapter available on the
MicroVAX H computer. The one used here is the Q22-Bus equivalent of the UNIBUS2

DR11-C interface adapter, designated as DEC module number M7941. There is, how-
ever, a design fault in the circuit board and modifications must be made, which are
detailed in Appendix A. The DRV11 is a general-purpose digital interface which
provides 16 input and 16 output lines (for handling 16-bit parallel data), and 8 con-
trol lines (for transferring control and status information) to transistor-transistor
logic (TTL) compatible external devices. These input/output and control lines are
converted to a bi-directional differential parallel bus via a single self-contained card
interface - the DRV11 Bus Interface card, also developed at AB.L [1]. Through this
hardware arrangement the MicroVAX II computer can communicate with the slave
modules at a rate greater than 1800 16-bit data words per second [1].

3 A DRV1I "DEVICE DRIVER"

An interface adapter attached to the Q22-Bus of a MicroVAX II is usually accessed
from a computer program via a device driver that is part of the VMS2 operating
system. However, the DRV11 is not supported by VMS, and hence a device driver is
not available. A different approach must therefore be employed to effect the transfer
of data and controls from user written programs to the DRVI1 interface adapter.

The DRVII has three registers for control and data transfer [2]:

"* the control and status register (CSR)

"* the output buffer

"* the input buffer.

These registers may be accessed from within a computer program by mapping the
MicroVAX Q22-Bus input/output (I/O) page3 , which contains the addresses of the
device registers above, to variables appropriately defined in the program. Values as-
signed to these variables are written directly into the respective registers and data
received by the input buffer may be read directly from the variable mapped to it. This
technique of accessing the registers of a device directly is very efficient [3], because it
by-passes the VMS operating system's optimization and resource management pro-
cesses. However, the technique is also dangerous if not used correctly, as it also
by-passes the normal checking and protection procedures of the operating system.

The two interrupt vectors of the DRV1l interface may be connected to a process4

by a simple device handler, CONINTEU, through the VMS SYSEN facility [4]. The
2 Q22-Bus, UNIBUS and VMS are registered trademarks of Digital Equipment Corporation
3 A page is a set of 512 contiguous byte locations used as the unit of memory mapping and

protection.4 VMS refers to any task under the control of the operating system, including any routines that
may be executed as part of the running a scheduled job as a proess.

2

parallel data bus uses one interrupt to indicate to the master that data are ready,
and the other to notify the master of any error detected in the instrumentation.

3.1 Mapping The Input/Output Page

To gain access to the I/O page (or for any page of physical memory) a process must
map the page into its virtual address space. In the present case, the page of interest is
that containing the DRV11 registers. The VMS operating system provides a system
service routine SYS$CR"PSC (create and map section) to perform the mapping of I/O
space to a process's memory. This routine is called as follows:

status = SYS$CRMPSC([inadr], Eretads], EacmodeJ, [flags], [gsnamJ,
1 [ident], [relpag], Echan], Epagecnu•], [vbn], [prot], pic])

where status is an INTEGER*4 variable returned by the routine to indicate the status
of the operation. According to the convention used in the MicroVMS Programmer's
Manual [5], items enclosed in square brackets are optional. The parameters rolpag,
chan and pf c are not relevant to mapping the I/O space and can be left blank. The
other arguments have the following meaning:

inadr - An array of two longwords' containing the addresses of the beginning and
end of the region in virtual memory to which the I/O page is to be mapped.
Thus, to map a single page of I/O space to an array variable, iopage, the
following code fragment may be used.

INTEGER*2 iopage(0:255)
INTEGER*4 inadx (2)

inadr(i) = %.LOC (iopage(O))
inadr(2) = %LOC (iopage(255)) + I

The variable iopage to which the I/O page will be mapped is 256 words long
since there are 512 bytes in each page. inadr(1) is the address of the beginning
of the region and inadr(2) is set to the address of iopage(255) plus one, so
that it contains the last byte of the region.

retadx - An array of two longwords which on return from the routine SYS$CRMSPC
will contain the addresses of the beginning and the end of the region of virtual
memory that the I/O page was actually mapped to. Note that if rotadxr() 6
inadr(l) or retadr(2) # inadr(2), then an error has occurred, usually due
to mis-specification of one or more parameters. If the mapping has not been
done at all, both values in ratadr are returned as -1.

aemode - This parameter specifies the access mode to be applied to the mapped
region. It is optional and is omitted in the present case. The access mode then
defaults to that of the calling process.

flags - A lougword containing a mask which determines the characteristics of the
mapped section. When mapping the I/O page, flags should be set up with the
following code fragment

'A longword is a data unit corresponding to 4 bytes of memory, usmally declared as an INTUQ*4
variable in VAX FORTRAN.

S. -- " -'- ,• , , ,,m w,,i • mm lmm m IIII B iii p 3

INCLUDE ' ($SECDEF)'
flags = SECMPFNMAP .OR. SEC$MWRT

The first statement includes the system definition library module containing the
definitions of the bit offsets used in the statement following to set the variable

flags. SEC$MPFNMAP indicates that the mapping should be done via page frame
number 6 (see the description of vbn below). This is to ensure that the variables
declared in a FORTRAN program are mapped correctly to the registers. The
SEC$MWRT mask bit is to allow the mapped section to have read and write
access.

gsdnam - This is the global section name and is required only if the section is to be
accessed globally. It is not used in the present case and is left blank.

ident - An argument containing match information for global sections. It only

applies to global sections.

pagecnt - A longword containing the number of pages to be mapped. It is equal to
I in the present case.

vbn - A long word containing the page frame number (PFN) of the memory where the
mapped section begins. The PFN of any physical page in memory is contained
in bits 9 through 29 of its physical address. The following paragraph shows how

the PFN of the I/O page containing the addresses of the DRV11 registers may
be obtained.

The address of the control and status register (CSR) of the DRV11 interface
on the Q22-Bus I/O space is given as 767600a (3EF80 16)[4]. The first (least

significant) 12 bits of this address, 76008 (F8016), give the offset address in
the Q22-Bus I/O space. This address must be added to the physical address

at the beginning of the Q22-Bus I/O space, which is given on page H-3 of
Reference [6) as 2000000016, to obtain the physical address of the DRV11 CSR,

i.e. 20000F80 16 . Of this physical address, bits 9 to 23 are the PFN and bits 0 to

8 are the byte offset within the page.

20000F"80 16 -=10 9900 0000 0000 0000 1111 1000 00002

PFN Byte offset

= 10000716 = 18016

Therefore, the PFN of the mapped I/O page is 10000716, and the byte offset of
the DRV11 CSR is 18 0 ti.

prot - A longword indicating the protection mask for the mapped section. This
argument may be omitted and defaults to read and write access for all users.

Once the I/O page containing the CSR of the DRV11 interface has been mapped,
access to its CSR and input and output buffers may be made via the addresses in
the process's virtual memory corresponding to these register's offsets relative to the
beginning of the mapped page. From the description of vbn previously, the byte offset
of the DRV11 CSR is 1801, = 3941o. The word (2 bytes) offset is then 394/2 = 192.

6Page frame number is the addreus of the first byte of a page in physical memory.

4

Hence the CSR may be accessed via iopage(192), and the output and input buffers
become iopage(i93) and iopage(194) respectively.

Note that the input buffer and the high byte of the CSR of the DRVI1 are read
only. For some reason, the VMS system insists that the input buffer, iopage(194),
be equated to a temporary variable before being output. Otherwise a hardware error
(presumably attempting to write to a read-only address) occurs.

3.2 Connecting To Interrupts

Connecting a process to an interrupt vector allows the process to receive notification of
interrupts from some hardware device. The notification may be via any combination
of the following:-

"* executing a user-supplied interrupt-service routine,

"* setting an event flag in the calling process, or

"* executing an Asynchronous System Trap (AST) service routine that gains con-
trol following the interrupt.

Before using the connect-to-interrupt system service, the hardware device must be
configured using the SYSGEN CONNECT command of the VMS operating system. The
following dialogue shows the procedure to configure the DRV11 as device OAAO (OA
is the standard VMS device name for the DRl11C interface and VMS recognizes the
present variant of DRV11 adapter only as a DRIlC):-

$ SET DEPiULT SYS$SYSTEX
$ RUN SYSGEN
SYSGEN> CONNECT OA1O /ADLPTER=O /CSR=%0767600 /VECTOR=%0300 -

/DRIVER=CONINTERR
SYSGEN> EXIT
$

The components of this command have the following meaning:-

"* /ADAPTER=O - has no significance on the MicroVAX, but must be included to
conform to the syntax of the command.

"* /CSR=X0767600 - specifies the Q22-Bus address of the DRV11 CSR.

"* /VECTOR=,0300 - specifies the iiiterrupt vector table address of interrupt 'A'
on the DRV11 adapter.

"* /DRIVER=CONINTERR - connects the DRV11 to a skeletal interrupt driver.

Note that all addresses (CSR and vector) are preceeded by %c to indicate that they
are octal numbers. This SYSGEN CONNECT command must be executed every time the
MicroVAX system is booted.

The previous command connects only one of the two interrupts of DRV11 to the
CONINTEIR driver. To connect the other one, the following command must also be
executed in SYSGEN.

5

SYSGEN> CONNECT 0ABO /ADAPTEA=O /CSR=%0767600 /VECTOR=%.0304 -

/DRIVER=CONINTERR

where 3048 is the interrupt vector table address associated with DRV1I interrupt 'B'.

Note th-." we have effectively defined two devices - OAAO: and OABO: - both
acct.--'.jg the same physical device registers, but responding to different interrupts.

,'-rrupt 'A' is used by the parallel data bus to notify the MicroVAX of completion of
a data transfer. Interrupt 'B' is used to warn the MicroVAX of some error conditions.

At run time, a process wishing to be notified of interrupts generated by the DRV11
must first assign the DRV11 devices to associate a VMS channel with each device.
This may be done via a system service call such as:--

status = SYSSASSIGN ('0OAAO:', chan, ,)

where chan (declared as an INTEGER*2 variable) will contain the value, returned by the
function call, of the channel associated with the DRVl1 device OAAO:. Both OAAO:
and OABO: should be assigned even if both interrupts are not to be used. Assigning
a device prevents other processes from accessing it, and hence avoids problems with
other processes altering the contents of the DRVI1 registers.

The process can now be connected to the device interrupt via a call to the system
service SYS$QIO in the following format:-

status = SYS$QI0 ([efn), (chan), funnc], jiosb], Castadr].
1 [astprm,, (pi]. (p2], [p3]. [p4], [p5]. (p6))

Two calls to SYS$QIO, one for each interrupt (device) are required. All parameters
except the p's have standard SYS$QIO meanings (see, for example, the chapter on
Q1O System Service in Reference [7)). The following are of specific interest:-

chan - The channel number obtained from a previous call to the SYS$ASSIGN rou-
tine.

func - A word containing the I/O function code - when connecting to an interrupt,
this code may be either IO$_CONINTREAD or IO$_CONINTWRITE. The definitions
of these function codes are contained in the system definition library module
$IODEF which is included in the program source in the following manner:

INCLUDE '($IODEF)'

or the codes may be declared as EXTERNAL by:

EXTERNAL IO$_COIINTWRITE, IO$_COINTRFAD

pi - A longword containing the address of a descriptor for a buffer containing code
and/or data. It is not used in the present case.

p2 - A longword containing the address of an entry point list which is not used in
the present case.

6

p3 - A longword containing flags, and event flag number specification. The flags
are used to describe options for connect-to-interrupt facility, and are contained
in the low-order word. The high-order word contains an event flag number to
be set when an interrupt occurs. The relevant flags required in the present case
are:--

CIN$M_EFN (value 1) indicates that an event flag is to be set on interrupt.

CIN$MREPEIT (value 4) indicates that the process should be left connected to
the interrupt vector until the connect is cancelled - usually by the process
exiting.

The values of CIN$M.. .. are obtained from the macro expansion of the module
$CINDEF which is contained in the VMS system macro library LIB .MLB in the
SYS$LIBRARY: directory.

The only reliable way to set up this long word is to set up a FORTRAN
record which maps the union of two words (INTEGER*2) with a single longword
(INTEGER*4) as follows

STRUCTURE
UNION

MAP
INTEGER * 2 switches
INTEGER * 2 efnum

END MAP
MAP

INTEGER * 4 flagword
END MAP

END UNION
END STRUCTURE

A variable of the above record type may then be created for each interrupt, for
example, as:

RECORD /flag/ dra.flags, drb-flags

The variable 'switches' is initialized with the statements

dra-flags.switches = CIN$MEFN .OR. CINSMREPEAT
drb-flags.switches = CINSMEFN .OR. CIN$M_REPEAT

and the event flag numbers, say 1 and 2, are specified as

dra-flags.e.num = I ! for event flag #1
drb.flags.otnum = 2 ! for event flag #2

p4 - The name of an AST routine (which must be declared as tITERNIAL) to be
called as the result of an interrupt.

p5 - An AST parameter to be passed to the AST routine when an interrupt occurs.

p8 - The number of AST control blacks to be pre-allocated. This is not required in
the present case.

7

"-l

Fin: Ily, to allow the interrupt signal to be received by the user program, the interrupt
enable bits (INT ENB A and INT ENB B, see Figure 2) in the CSR of the LRV11
interface adapter must be set to 1. This may be achieved with the statements

iopage(dr-csr) = IBSET (iopage(drxcsr), v-inteenba)
iopage(dr-csr) = IBSET (iopage(drxcsr), v-intenbb)

The index dxrcsr refers to the location of DRV11 CSR in the mapped variable array
iopage. The bit positions of INT ENE A and INT ENB B in the CSR are v-intenba
and v.intenbb respectively. They are pre-defined via the declarations

INTEGER*2 dr-csr
INTEGER*2 vintenbb, v.intenba
PARAMETER (dr-csr = 192, vintenbb = 5, v.intenba =6)

Thus, if the REQ A bit is asserted while INT ENB A is set in the DRV11 CSR, event
flag number 1 will be raised (set). If the REQ B bit is asserted while INT ENB B is
set, event flag number 2 will be raised.

3.3 Subrout*-ie DRINIT

The above procedures for setting up the interface between a process and the DRVLI
at run time have been combined into a single routine DRINIT. This routine (see
Apr'endix D) does the following:-

1. Maps the Q22-bus I/O page containing the DRVU registers to an array iopage
in the process's virtual address space.

2. Assigns both "devices" and obtains their channel numbers.

3. Connects to both DRVl1 device interrupts. Event flag number 1 is associated
with the DRV11 interrupt A, and event Cag number 2 is associated with DRVIT
interrupt B.

The I/O page is mapped to an array iopage defined as:-

INTEGER*2 iopage(O :255)
COMMON /dr-comzon/iopage

This array, and hence the common block in which it is contained, must be page
aligned. This may be done by including an option file dr-link -opt with any LINK (8]
command (qualified with the LINK switch /OPT) which incorporates dr-init. The
option file contains the line:

PSECT.ITTR a dr..couson, page

4 SOFTWARE I/O INTERFACE PROCESS - DIGIO

4.1 Requirements Of The I/O Interface Process

Requests for data transfers to or from the parallel bus may arise under many differ-
ent circumstances, and may occur as the result of the operation of many different
processes. As the data acquisition software is currently set up, any of the following
processes could require such transfers:-

1. COM??? (the many variants of compute sub-processes) will need to transfer in-
formation to the bus during real-time operations (e.g. set point Mach number,
Reynolds number length scales etc.) and will obtain raw data from devices
connected to the data bus via transfers from the bus.

2. MON??? (the many variants of monitor sub-processes) will need to acquire data
from whatever module is being monitored. The frequency with which MON???
processes request such data will depend on what type of operation is being
monitored (e.g. when monitoring the current state of health of a strain gauge
balance more frequent requests will be made as the balance and/or model max-
imum loads are approached).

3. TST??? (variants of a general process used to test individual modules) will need
to obtain data from the particular module under test as well as to write data
to that module.

To coordinate the use of the DRVll interface between the parallel bus and the Mi-
croVAX, all input and output of data to or from the parallel data bus is carried out
by a single process - DIGIO. This process will be run (detached) from the system
startup file as:-

$ RUN /PROCESS=DIGIO /ERROR=DIGIO.ERR /UIC=[200,OJ /DETACR -

SDISK1: [DATAIN. EXEJ DZGIG. El!

and hence will be up and running whenever the MicroVAX is operational. The
qualifier /ERROR=DIGIO.ERR directs any run-time error messages resulting from the
execution of DIGIO to the file DIGIO.ERR. The /UIC=[200,0] qualifier assigns the
DIGIO process a user identification code having a group number of 200, which is
common to all users on the MicroVAX system, except the system manager and a few
special accounts. This is to ensure that DIGIO can communicate with other processes
run by other users (see section 4.6). $DISKI: [DATIIN.EIEJ is the directory where
DIGIO..1E is located.

Consideration of the many possible processes requiring service from DIGIO shows
that requests for data transfers from some processes need to be satisfied more quickly
than others. For example, requests for the real-time CON??? processes must be dealt
with immediately, to guarantee that raw data are gathered at the desired moment in
time, or while the tunnel conditions remain as required. On the other hand, it matters
little if the data requested by MON???, for example, are not available immediately. In
fact, it is desirable that requests already in progress from processes such a MON???
be aborted in favour of a request from CON???. This suggests a multi-level priority
system in which a low priority request already in progress makes way for a higher

9

priority request, and that low priority requests queued for DIGIO be passed over in
favour of requests of higher priority. Most, if not all the features of an ideal system
can be realized with a two-level - high and low - priority system.

Implicit in the above discussion is the provision of some sort of queueing system for
requests to DIGIO. Requests queued to DIGIO would need to include the following
information:-

1. The priority of the request.

2. The number of data transfers required to complete this request.

3. A list of addresses on the digital data bus to, or from, which data are to be
transferred.

4. The location where data to be transferred are to be stored or found.

Communication between DIGIO and processes requesting data transfers will also need
to include some mechanism for the notification of errors. In general, errors will be of
one of three general types:-

1. A serious error may be signalled by the parallel data bus, indicating some sort
of fault condition, either on the bus or in the interface, from which recovery is
not possible.

2. The parallel data bus may signal the occurrence of a recoverable (non-fatal) er-
ror, for example a strain-gauge amplifier overloading. Operations may continue
following such errors but data from that particular module on the bus may be
invalid.

3. A low-priority request may either be aborted or ignored in favour of a higher
priority request. In either case, the data or action expected by the requesting
process will be invalid, and the process must be notified so that it may take the
appropriate action (in many cases this will simply be to requeue the request).

The operation of DIGIO thus requires effective communication and synchronization
with other processes wanting to access the DRV11 interface, or for that matter,
the data bus. This has been achieved by making use of the following programming
techniques provided by VMS and VAX FORTRAN:-

1. Mailboxes:- These are channels provided by VMS for interprocess communi-
cations (see section 3.4.2 of Reference 5). Messages are passed into mailboxes
in the form of character strings. They are queued within the mailbox and are
read by the destination process sequentially.

2. Installed Common Blocks:- A common block defined in a FORTRAN pro-
gram unit may be installed in the system memory as a shamble image. A
program wanting access to this common block, as well as defining and declaring
it within the program unit, must also be linked to this image (see section 4.4.4
or page 3-46 of Reference 5).

3. Common Event Flaps:- Event Bags are used to signal either the status
(success or failure) of an operation, or the occurrence of a particular event.

10

They may be waited for when one operation must be completed before the next
one can continue, or they may be checked to see if they have been set as an
indication of a status or condition.

4.2 The DIGIO Mailbox

The primary means of communication between DIGIO and other processes is a queue
containing messages requesting DIGIO to carry out data transfers. This queue is
realized as a VMS mailbox called digio.mbox. DIGIO creates this mailbox during
its initialization phase via the statement

status = sys$crembx (%VLL(1),
I %VAL(mbox_ chan),
2 ZVAL(256),
3 %VAL(1024) . ,
4 'digio _mbox'

where

*VL (1) - indicates that the mailbox is permanent. This ensures that the
mailbox logical name is entered into the system logical name table (rather than
the process logical name table) making it available to all other processes.

* mbox.chan - is a word (INTEGER*2) which on return from SYS$CREWBX will
contain the channel number assigned by VMS to the mailbox.

9 %VAL(266) - indicates that the length of any message sent to this mailbox will
not exceed 256 bytes (or 256 characters in VAX FORTRAN).

* XVAL(1024) - specifies the size (in bytes) of a buffer set aside by VMS for
temporarily storing queued messages.

'digio.mbox' - is the name given to the mailbox.

Any process wishing to queue a request to DIGIO should first assign a channel number

to the mailbox via the statement

status = SYS$ASSIGN ('digio.mbox', digio.mbox.chan, . .)

where digio.mbox.chan (INTEGER*2) is the returned channel number and is used
for all subsequent transfers of messages to the mailbox. The requesting process may
then send a message to digio_,box via the system service routine STS$QIOH of the
following form.

status - SYSSQIOW (, %VAL(digio.abox.chan),
1 7VAL(abox.-write.code). , , .

2 RtEF(digio-nossap),
3)VAL(Iougth))

where

Sdigioo.aboz.chan - Is the channel number returned by STS$ASSIGI.

11

"* mboxvrite.code - is a longword (INTEGER*4) containing the SYS$QIOW func-
tion code "write to a mailbox". This is set via

mbox-vrite-code = IO$WRITEVBLK .OR. IO$M-NOW

where the modifier IOSMNOW specifies that the requesting process should com-

plete the function call now rather than waiting for DIGIO to read the message,
and IO$WRITEVBLK is the mailbox write function. All the 10$... function codes
are defined in the system definition library module $IODEF of the system library
file SYS$LIBR&RY:FORSYSDEF. TLB. The $IODEF module may be included in the
source code of the user written program with the statement:-

INCLUDE '($IODEF)'
"* digio.message - is the message to be sent to DIGIO (see description below).

"• YVAL(length) - specifies the length of the message.

DIGIO reads messages queued in digio.mbox via the following SYS$QIOW call

status = SYS$QIOW C ,VAL(mbox.chan),

1 ZVAL(mbox.read.code),
2 mbox.iosb, , ,
3 ,REF(mbox.message),
4 %VAL(256))

where all variables are similar to those in the previous STS$QIOW call except that the
function code is given by

mbox-road-code = 0$READRBLX .AR. IO$MNOW

The modifier IOSM_NOW specifies that the SYS$QIOW function is to be completed nw
rather than waiting for the mailbox to contain a message. The input/output status
block abox-iosb is specified by the structure:-

STRUCTURE /iostat.block/
INTEGER*2 iostat, msg.length
INTEGER*4 sond?..pid

END STRUCTURE

RECORD /iostat.block/ abox.iosb

In addition to the status of the data transfer, DIGIO can also obtain the length of
the message read, and the identity of the process which sent the message from this
status block.

4.3 The DIGIO Mailbox Message

Experiments with the MicroVMS system have indicated that when writing to or
reading from a mailbox a few long messages incur significantly less overhead than
many short messages. Hence, if a process requires several data trasfers, it is better

12

to combine them into one request, rather than to have a series of requests each
consisting of only one transfer. This arrangement has some disadvantages, the most
important being the loss of a one-to-one relationship between bus errors and data
transfer requests, but in normal circumstances where the error rate is low, the faster
overall rate of data transfer will outweigh this disadvantage.

Messages sent to digio.mbox are character variables with the following contents:-

* priority - indicates the priority of the request - 'H' for high, 'L' for low.

* requostor-index - identifies the requesting process.

* num-addresses - the number of addresses to or from which data is to be read

or written. A ma-imum of 50 addresses (and hence data transfers) may be
included in each request.

* addresses(i), i * 1, num-addresses - indicates the actual bus addresses
to or from which data is to be read or written.

These variables are encoded into the character array variable mbox-message via an
internal write statement with a format of:-

FORMAT (Ai, 11, 11, 11, 12, <nuumaddresses>(11, 14))

All information needed by DIGIO to complete the transfers is contained in this
message, except that there is no indication of the direction of each data transfer,
i.e. whether it is a read or write, as this is encoded directly in the bus address for
each data transfer. The parallel data bus follows the convention that all address to
which data may be written are odd (least significant bit set) while those which may be
read are even (least significant bit not set). Hence, it is possible to include a mixture
of reads and writes in a single request to DIGIO.

In addition to detecting whether an address is odd or even, DIGIO detects three
special addresses indicating a request for a non-standard operation on the bus. These
are:-

* 0000 - DIGIO treats this address as a NOP (no operation) and does not process
the address further. The need for such an address arises when a programmer
wishes to reserve a "space" in digiosmessago for a future bus operation that
is yet to be developed.

* 0001 - DIGIO sends a "trigger all analogue to digital converters (ADCs)" to
the bus to begin a sample of the current data values.

* FI - DIGIO sends a "master reset" to the bus. This code must be used with
eztreme care (see further comments in section 4.C).

In addition to sending the above message to the digio-.abox mailbox, a requesting
process must also notify DIGIO that a message has been sent. This is achieved by
setting an event flag (see section 4.6) - number 65 for a low priority request, or
number 64 for a high priority one.

13

4.4 The DIGIO Global Common Block

To coordinate the concurrent use of DIGIO by several processes, and to provide an
efficient means of communicating data between requesting processes and the parallel

bus, a global common area called digio-coumon is created. The data structures
contained in this common area are maintained either by DIGIO itself or by processes
using DIGIO. The common block and the variables which are contained in it are
defined in an include file DIGIO_-INCLUDE.FOR (Appendix B). The data structures,
their purpose, and their usage are described in the following sub-sections.

4.4.1 Bus Module Usage Tables

Wind tunnel data gathering devices connected to the parallel bus are known as "in-
strumentation modules" or just "modules". Each module is electrically distinct and
has one and only one physical connection to the bus. Modules usually coordinate all
data transfers associated with either a single device or a logical grouping of tunnel
instrumentation. For example, there is a strain gauge balance module incorporating
six strain-gauge amplifiers, their analogue to digital converters and their associated
controls, which coordinates all data transfers to or from a six-component strain-gauge
balance. Other modules are associated with Scanivalves, tunnel parameters, etc. In
its present form, the parallel data bus can handle up to 16 modules (numbered in
hexadecimal from 80 to 8F), but this could be extended if the need should arise. The
current allocation of modules to module numbers is included in Table 1.

Table 1: Allocation of module number to data acquisition modules.

Module Number Module Name
80 Auxiliary 6-Channel AC Amplifiers Module
81 Strain Gauge Module with 6-Channel AC Amplifiers
83 Scanivalve Module with 6-Channel DC Amplifiers
85 VPT Tunnel Parameter Module
87 LSWT Tunnel Parameter Module
8A Inclinometer Module
8B Actuator Module

Two variables in digiocomon keep track of those modules which are electrically
connected to the bus. The first variable, modulo-table, is a logical array defined as

LOGICAL module._..ablo(0:15)

in which each element is set to . TRUE. if the module with the corresponding number
is electrically connected to the bus. The second variable, module-names, defined as

CUARACTUR*,o module-names (0:15)

is a similarly dimensioned array of character variables each with a length of 80
characters. If an element of noduletable is .TR~UZ., the corresponding element
of module.namos will contain a character string which identifies that module.

14

6t

These two variables are initialized by DIGIO when it is started, and are updated
whenever DIGIO receives a master reset command. In either case, DIGIO attempts
to read a special address (8x60, where x is the module number in hexadecimal, see sec-
tion 4.5) contained in each module which returns that module's identification string.
If the string is not returned after 10 milliseconds, DIGIO times out and sets the
corresponding entry in module-table to FALSE..

Processes requesting data transfers via DIGIO may use the information in this data
structure, typically to ensure that all modules required for their particular data trans-
fers are present, but they must not change any of the information contained in these
variables.

4.4.2 Data Arrays And Usage Indicators

When writing or reading data to or from the parallel bus, DIGIO obtains data to be
written and stores data which has been read in an array in the global common area
defined as

INTEGER*2 data-list (1000)

Each process transferring data via DIGIO is allocated one or more blocks of 50 ele-
ments within this array. In this way, the data belonging to one process using DIGIO
remains independent of all others. To keep track of which process owns which block
of elements within data-list and to determine where each :,,oces-'s data are stored,
DIGIO maintains the following data structure

INTEGER*2 num.requestors
LOGICAL requestor-index-table(5)
LOGICAL data-usagetable(20)

The variable num.requestors contains the number of processes currently using
DIGIO for transfers to, or from, the parallel bus - the number of processes "con-
nected" to DIGIO. Currently, the maximum number of processes which may be con-
nected to DIGIO at any one time is set (somewhat arbitrarily) to 5. Whenever a
process wishes to connect to DIGIO it must first check that num-requestors is less
than 5, and if so, increment num.roquestors. When a process disconnects from
DIGIO, num-requnstors must be decremented.

Having incremented num..requestors, a process connecting to DIGIO must then
find the first available empty (i.e. FALSE.) element in requestor-indextable and
set it to .TRUE.. The index of this element then becomes that process's unique
identifier (requestor index) in DIGIO and is used by DIGIO to derive several quantities
associated with that process. The connecting process will also require the value of the
requestor index and it should therefore also store it locally. When disconnecting from
DIGIO a process should return that element of roquestor-indox.table to. FALSE..

A connecting process must then allocate one or more blocks of 50 elements in the
array data-list for its own use. This is done by searching the data-usagotable for
an empty (i.e. FALSE.) element and setting that element to TRUE.. If the process
requires more than 50 elements of data~list, the process must ensure that as many
subsequent elements of data-usage-table as the number of blocks (of 50 elements

15

$" t

in data-list) required are also empty, and set each one to .TRUE.. In other words,
the elements of data_list allocated to each must be contiguous.

In addition to the above variables defined in the DIGIO global common block, an
integer variable data.usage..index, defined locally within the connecting process, is
used to store the first entry of data-usage-table that is allocated to the process
so that when it disconnects from DIGIO, each element of data.usage_.table set by
that process may be returned to . FALSE..

Another requirement of a process connecting to DIGIO is to determine the index of
the address in data-list where data for this process begins. This index is stored
in an integer variable data-start-_addr, also defined locally within the connecting
process, and may be calculated via a statement of the form:-

data-sta.taddr = (data-usage.indox - 1) * 50 + I

4.4.3 Display Process Activity Indicator

The display process activity indicator variable, defined by

LOGICAL dspon

is used to indicate that a display sub-process (DSP???) is currently active. It is not
part of the DIGIO data structure, and is only included in the global common area for
convenience (this common is available to all processes connected to DIGIO). It is used
by various processes to determine whether or not certain computations which are only
required when a display process is active should be done. (This is necessary because
display processes may be started and stopped asynchronously without reference to
other processes.)

All display sub-processes must ensure that dspon is set to .TRUE. when they are
started, and returned to . FALSE. when they are stopped (so long as no other display
sub-process remains active).

4.4.4 Linking To The Global Common Block

For the global common block to be accessible by other processes, it must be installed
in system memory as a shareable image. The program, DIGIOINSTILLED .FOR, was
created to install digio-common as a global common block. It contains the following

three statements:-

PROGRAM DIGIOINSTILLED
INCLUDE '[DATAIN.DICI0] DIGIINCLUDE. FOR/LIST'
END

The program is compiled and linked as follow:-

$ FORTRAN DIGIOINSTALLED
$ LINK/SRAREABLE DIGIOINSTALLED

The file protection on the executable code, DIGIO.INSTALLED .EZ needs to be mod-
ified so that the "world" has read and write access to it. This is achieved by the

command:-

16

5.
'9 4

$ SET PROTECTION:W=RW DIGIOINSTLLLED.EIE

To install the image (the executable code of a program), CMKRNL privilege is required.
The following steps show how this may be done:-

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL CREATE SDISKI:EDATAIN.EXEJDIGIOINSTALLED.EXE -

/SHARED/WRITEABLE
$ SET PROCESS/PRIVILEGE=NOCMKRNL

$DISKI: [DATAIN. EXE] is the directory where DIGIOINSTALLED. EXE is located.

Any process that wishes to transfer data to, or from, the parallel bus via DIGIO
should include the global common block in its source code via the statement

INCLUDE '[DATAIN. DIGIO] DIGIOINCLUDE. FOR'

When linking the object code, an option file containing the line

*DISKI: [DATAIN.EXE]DIGIOINSTALLED/SHAREABLE

must be included in the LINK command with the /OPT qualifier. The following
dialogue shows how DIGIO . EE is built (DIGIO. OPT being the option file):-

$ FORTRAN DIGIO.FOR
$ LINK/EXE=DIGIO .EIE DIGI0.OBJ ,DIGIOLIB. OLB/LIB ,DIGI0.OPT/0PT

DIGIOLIB. OLB is the object library containing the subroutines used by DIGIO.

4.5 Module Addresses

Each module number on the parallel bus is assigned 256 (10016) addresses of the
form 8x??16, where x is the module number in hexadecimal. Thus, module number
5 is assigned addresses from 850016 to 85FF 16. However only those addresses above
8x6016 (i.e. a total of 160 (A0 16)) are valid external read/write addresses.

To avoid the need for system software developers to be aware of the hexadecimal
addresses of each function on each module, all valid parallel bus addresses have been

mapped to an array defined by

INTEGER*2 address-lis C(0:1599)

Elements of address-list are defined in the file BUS-ADDRESSES.FOR and are in-
cluded in the main program unit of DIGIO at compilation time. Referencing this
array, rather than the actual bus addresses, allows system programs to be written
so that they are independent of changes in the allocation of bus addresses within
modules.

The three special bus addresses - No operation (NOP), master reset, and trigger -
are contained in address _list.(O), address-list(1) and addross.list(2) respec-
tively.

Appendices E and F give full listings of the allocation c ! bus addresses to the array

address.list. Because of differences in module construction and usage in the two
wind tunnels, bus address allocations in the two tunnels are different.

17

t

4.6 Data Transfer Complete/Error Notification

When DIGIO has completed processing a data transfer request, it will either:

1. set an event flag indicating that the transfer was completed successfully (the
success event flag) or,

2. set an event flag indicating that the transfer failed or was incomplete (the failure
event flag). There are two reasons for the failure event flag to be set:-

"* the data bus failed to respond within a timed-out period (50 millisecond),
or

"* at the completion of a low-priority request which has been either aborted,
or passed over, in favour of a high-priority one.

A group of event flags, or a common event flag duster, has been specifically allocated
to be shared and used among processes7 communicating with DIGIO. This event flag
duster is created with the SYS$ASCEFC system service. A process can reference this
cluster by invoking the same SYS$ASCEFC system service and specifying the same
cluster name. The DIGIO event flag duster is given the name of dicluster and
is assigned to a character array variable, digio-eofntcluster. Note that although
VAX FORTRAN is a case insensitive language, the event flag cluster name is case
sensitive. Thus to create or associate a process with the DIGIO event flag duster the
following code fragment is used.

CKAIRCTER*9 digio-efntcluster
PARAMETER (digio-efntcluster = 'dicluster')

status = SYS$ASCEFC (%VAL(64), digio.ein.clustor ,)

The common event flag cluster thus created consists of the 32 event flags from 64 to
95 inclusive.

As discussed above, most errors which occur on the parallel bus will be informative
rather than fatal. Typically, these errors will indicate that an input transducer (such
as a strain gauge amplifier) has been, for example, over-ranged. Generally such
events will not occur synchronously with requests for data transfers. Therefore, the
state of the error indicating interrupt (REQ A bit) on the DRVll is continuously
monitored via an Asynchronous System Trap (AST) routine. Whenever an error is
detected, control is transferred to the AST routine (called DIGIOERRORAST), which
determines the type and source of the error. It interrogates the parallel bus and
creates an error message containing the module number in which the error occurred,
an indication of whether or not the error is fatal (in which case the parallel bus
would have to be sent a master-reset before further data transfers are attempted),
and a description of the error. The AST routine sends this message to a mailbox
- the error mailbox - associated with each process currently connected to DIGIO.
The error message is packed into a single character variable 40 characters long, the
individual components being available via an internal read statement, as shown in
the following code fragment:-

'Processes can share a conmmon event Anc duster only if they have the same gmup nurber in
their user identification code (UIC), i.e. they are executed by users whose UIC has the same group
number.

18

S. - , , i a a| I i

CHARACTER error.messago*40, message-text*3?, severity*u
INTEGER*2 module-number

READ (error.mossage,10) severity, module-number, message_text
10 FORMAT (Al, 12, A37)

The AST routine will send a copy of the error message to mailboxes with names cre-
ated by the concatenation of ' error•_mbox_ ' with the requestor index of each process
currently connected to DIGIO. Hence, to receive an error message, each process must
create a mailbox with a name of the form orror.mbox_?, where ? is the requestor
index of the process. The AST routine DIGIOERRORAST then sets an error event
flag associated with each connected process to indicate that an error message has
been sent.

To allow all processes connected to DIGIO to proceed independently, DIGIO main-
tains a separate set of event flags - ef n-success (success event flag) ,eof nfailure
(failure event flag) and ofn-error (error event flag) - for each connected process.
DIGIO derives the event flag numbers allocated to each of these functions from each
connected process's requestor index, requestor.index, via code of the form

,funsuccess = 63 + 3 * requestor-index
efntfailure = 64 + 3 * requestor-indox
efinorror = 65 + 3 * requestor-index

which allocates 3 consecutive event flag numbers for each connected process in the
range of 66 to 80. Each process connecting to DIGIO should therefore compute the
event flag numbers allocated for its use via code similar to that above.

It should be noted that the above event flags numbers (66 to 80), together with
numbers 64 and 65 used by connected processes when sending request messages,
should not be used for other purposes.

4.7 Master Reset

As mentioned above, a reference to addross-list(O) (which translates to a bus
address of FFFF16) in a data transfer request causes DIGIO to send a master reset to
the parallel bus. This should be used with extreme care since it destroys (initializes)
all data stored in all modules connected to the bus. However, a master reset is the
only way to initialize the parallel bus properly at power up, to reset the bus to a
known state whenever a module is electrically connected to or disconnected from the
bus, or to reinitialize the bus following a fatal (non-recoverable) error.

The first situation is taken care of by DIGIO. The other two are the responsibility
of system processes. However, before sending a master reset request to DIGIO and
hence to the bus, a process must be the only process connected to DIGIO - any other
process would have no knowledge of the change to the data on the bus. A process
which wishes to initiate a master reset must therefore ensure that num.requestors
is equal to one, indicating that only one process (itself) is connected to DIGIO.

19

5 SUMMARY OF REQUIREMENTS FOR A PROCESS COMMU-
NICATING WITH THE BUS VIA DIGIO

The following sections summarize the actions which must be taken by a process that
needs to transfer data to or from the parallel bus via DIGIO. Many of these have been
at least implied in the descriptions of how the various parts of the system operate in
previous sections. However, in the following sections, the actions are grouped in a
logical order, and code fragments to achieve each action are provided.

5.1 Definition Of Variables

Before communicating with DIGIO, the data structure must be set up correctly for
the process. The following are definitions of some of the more important variables.

1. All system routines mu.st be defined as INTEGER*4 variables before being used.
Some of these routines are

INTEGER*4 status,
I SYS$CREMBI,
2 SYS$USSIGN,
3 SYS$ASCEFC,
4 SYS$DACEFC,
5 SYS$SETEF,
6 SYS$CLREF,
7 SYS$WFLOR,
8 SYS$QIOW

The variable status is widely used to hold the return status code of the system
routines, and must be defined as an INTEGER*4 also.

2. Two condition codes defined in the system object and shareable image libraries
used in the process's code must be made known to the process. The easiest way
to do this is to define the condition codes as external symbols, thus

EXTERNAL ss$_vass*t
EXTERN•AL ss$_.ndoffilo

The codes may then be referred to by using the built-in function %L0C which
returns the address of its argument.

3. Several variables must be available to all program units (routines) in the process.
These would normally be included in a common block shared by all program
units. These variables are:-

CHARACTER digio-oessago*256
INTEGER*2 digio_mbox-chman.

1 *rror-aboxchan

IJITEGER*4 roquostor.indox,
1 data-start.addr,

20

2 efntsuccess,
3 efntfailure,
4 efn.error,
5 efn.mask

4. The remaining group of variables need only be defined in the program unit in
which they are used. These should be defined as follows:-

CHARACTER error-mbox-name*12,
I error-inessage*40

CHARACTER digio_,,boxname* (*)
PARAMETER (digio-mbox.name = 'digio-mbox')

CHARACTER digio_efn_cluster* (*)
PARAMETER Cdigio_efn.cluster = 'dicluster')

TNTEGER*4 mbox-vrite.code
PARAMETER C mbox-vriteecode '70'1)

INTEGER*4 mbox-read-code
PARAMETER (mbox-read-code = '71'1)

Note the use of PARAMETER statements to define several constants. The dis-
advantage of not being able to include such variab, ; in COMMON blocks is out-
weighed by the protection given to their values - any attempt to change the
value of a constant defined via a PARAMETER statement will produce an error at
compilation time.

There are two include files designed to facilitate the creation of the above data struc-
ture. They are DIGIOINCLUDE.FOR and DIGIODEFS.FOR, both of which reside in
the directory SDISKI: [DATAIN. DIGID].

DIGIO.-INCLUDE.FOR defines the global common block, DIGIOCOMMON, and its asso-
ciated variables (section 4.4). It must be included in each program unit (subroutines
and functions) which references any one of these variables. A listing of this include
file is given in Appendix B. Note that when linking, an option file must be included
to link to this shared, shareable common (see section 4.4.4).

DIGIODEFS.F1OR defines the standard variables (groups of variables referred to in
items 3 and 4 above) re.aired by a process when communicating with DIGIO. It
defines the variables common (but defined locally within the process) to all requesting
processes such as digio.mbox-nama, low-priority-ein and high.priority-.ei. It
also defines process-specific variables such as digio.mbox.chan, error-mbox-namo,
requestor-index and so on. These process-specific variables are grouped into a
common block named process-common so that they may be used by all the routines
within the process. Appendix C contains a listing of this file.

These files are included into the appropriate program units with the statements

INCLUDE 'SDISK1: [DATAIN.DIGIO]DIGIO_ INCLUDE.PF0R
INCLUDE 'SDISK1: [DATAIN.DIIJ0]DIGIODEFS.FOG'

and the appropriate variables will be defined and set up accordingly.

21

-,-=4--mmmnun | nn I•=

5.2 Connecting To DIGIO

Before a process can transfer data to or from the parallel bus, it must "connect" to
DIGIO via the following steps:-

1. Associate the DIGIO common event flag cluster with

status = SYSSASCEFC (%VAL(64), 'dicluster')

2. Connect to the DIGIO mailbox by

status = SYS$ASSIGN (digio-mbox-name, digio.mbox.chan, , ,)

3. Increment the number of processes connected to DIGIO via

num-requestors = num.requestors + 1

Note that the value of num.requescors should be checked before incrementing
and if it is greater than, or equal to 5, the connection cannot be made until one
or more processes disconnects from DIGIO.

4. Determine the process's requestor index via

i=I
DO WHILE (requestor-indextable (i))

j=i+ 1
END DO
requestor-indextable (i) = .TRUE.
roquestaorindex = i

The above code locates the first empty (.FALSE.) element in the array
requestor-index-tabl., sets it to .TRUE. and remembers the value as
requestor_ index.

5. Create the process-specific error mailbox via

errorambox.name (1:11) = 'error -mbox_
WRITE (*rror_mboxnam*(12:12),1O) requestor.indox

,0 FORMAT C It)

status * SYS$CREMBZ (XVAL(C1),
1 error-mbox-chan,
2 7.V&L(40)
3 error-abox-name)

6. Determine a starting address f, the process's data storage area in data-list.
First locate the first empty (M Ai.E.) element in the array data-usage-table
via

i=i

DO WHILE (data-usagetable(i) .AND. i .LE. 20)
iuil

END DO

22

If this process requires 50 or less locations in data.list (which will be the case
for most of the processes connecting to DIGIO), the area in data-list pointed
to by this element of data.usage.table will be sufficient. The connecting
process must now mark this element in data.usage.table as being used and
add the computed starting address to data-startaddr. The index of the first
entry in data.usage.table is stored in data.usage.index via

data-usage-table(i) = .TRUE.
data-usagoindox i
data-start__add = (i-) * 0 + I

If this process requires more than 50 locations in data-list, then it must en-
sure that as many subsequent elements of data.usage.table as the number of
blocks (of 50 elements in data.list) required are also free (.FALSE.). Other-
wise, the procedure is as set out above.
In both cases, if less than the required number of elements in data.usage.table
is available, the connection must be aborted.

7. The event flag numbers allocated to this process must be computed from the
value of requestor.index via

etnusuccess - 63 + requestor.index * 3
efn-failure = 64 + roquestor.index * 3
efn.error = 6S + roquestor-index * 3

To allow the process to detect the setting of either the success or failure event
flag via the SYS$WFLOR system service routine, an event flag mask can be created
which is the logical OR of the success and failure event flag numbers. This may
be achieved as follows

efntmask = 0
:•fn.mask = IBSET (e*nfmask, MOD (ofn.success, 32))

efnt-ask a IBSET (efntmask, MOD (ofn.failure, 32))

The above procedures have been included in the subroutine CONNECT.DIGIO with the
standard variables defined as in DIGIO.DEFS .FOR. The calling syntax of this routine
is

CALL CONNECTDIGIO (digio.status)

where digio-status is an INTEGR*4 variable (pre-defined in DIGIODEPS.FOR) re-
turned from CONNECTDIGIO indicating if the connection is successful (1) or not (0).

This subroutine is contained in the object library DIGIOLIB. OLD located in the direc-
tory $DISK1: [DATAIN. DIGIO], and may be linked to the executable code of a user
program with the LINK qualifier SDISKI: [DATAIN. DIGIO] DIGIOLIB. OLB/LIB.

5.3 Transferring Data Via DIGIO

Once a process has successfully connected to DIGIO it may read or write data from
or to the para'lel bus by sending request messages to the digio mailbox.

23

Whether the request is for a read or a write, the first part of the DIGIO message
remains the same, varying only with the priority of the request. It is therefore useful
to generate this "header" part of the message once, and then to use it as part of all
subsequent messages. This may be done via

digio-message(1:1) = 'H'

WRITE (digio-message(2:3),10) requestor-index
10 FORMAT (11, 1)

which generates a high priority request message. Substitution of an 'L' for the 'H'
achieves the same for a low priority request.

The remainder of the message is dependent on the particular data to be transferred.
If, for example, six variables (e.g. the outputs of six analogue to digital converters)
are to be transferred from the sting balance strain gauge module, the remainder of
the message could be generated via

digio.message(4:36) ' 6 102 103 104 105 106 107'

which indicate that six addresses are to be transferred and includes the indices
of the required elements of address-list. These values are defined in the file
BUSADDRESSES.FOR which is used by DIGIO as a look up table for the appropri-
ate addresses to be sent to the data bus.

The request message is sent to the DIGIO mailbox via the system service routine
STStQ lOW--

status = SYSSQIOW (, %V1L(digio.mbox.chan),
1 %VAL(mbox_vrit.e._code) ...
2 %REF(digio.message),
3 %VAL(256))

The requesting process should then wait for DIGIO to set either the success or failure
event flag to indicate that the request has been completed, determine which event
flag was set, and process the data as required.

The subroutine DIGI0_SEND is designed to simplify the process of constructing the
digioa-mssage and the SYS$QIOW calling sequence. To request a data transfer, it
is only necessary to put the required address indices into the array addrj~ndex and
invoke the routine with the following syntax:

CALL DIGIOSEND (mninaddresses, addr.index, digio_status)

where

"* numaddrosses - is an INTEGER*4 variable (pre-defined in DIGIODEFS. FOR)
indicating the number of addresses to be sent,

"* addr.indox - is an INTEGfl*2 array (pre-defined in DIGIO.DKFS.FOR) con-
taining the indices of the addresses to be sent, and

"* digioastatu8 - is an INTEGZR*4 variable indicating the return status of the
routine. If digio-status-l the operation is successful. If digio-status-O the
operation fails, and if digio.statuse-1 an error has occurred.

24

The object code of DIGIOSEND is found in SDISK1: [DATAIN.DIGIO]DIGIOLIB.0LB
and may be linked to a user's program in the usual manner.

Note that the values read from the parallel bus are stored by DIGIO in data-list,
beginning at the start of the requesting process's area, i.e. at data-start-addr, and
in the same order as they appear in the request message or in addr-index. The values
are returned in data-list as INTEGER*2 variables, and are able to represent the full
16 bit precision generated by the analogue to digital converters used on the parallel
bus. Outputs from the analogue to digital converters are returned by DIGIO as
offset binary (000016=+327681o, 7FFF 16 =010 , and FFFF16 =-32767 10). To convert
the values in data-list from this form to the two's complement binary used by
the MicroVAX (800016=-3276810, 000016=010 and 7FFF1 6=+327671 o), the following
code fragment may be used.

INTEGER*2 mask
PARAMETER (mask = '7FFF'X)

adc-value(i) = IIEOR (data.list(j), mask)

Note that there are two "reserved" words in the range returned by DIGIO; 000016 or
null, and FFFF16 which if returned indicates that the data are not valid.

To write data to the bus, the procedure is similar, with the obvious exception that the
data to be written must reside in data-list before the request message is sent. For
example, to send a value to the bus to be used as a reference length for the Reynolds
number calculations (for which the bus address resides in address-list(522)), the
following code could be used.

data-list(data- start-addr) = renlen / 1000.
digio-message(8:15) = 1 1 522'

status = SYS$QIOW , XVAL(digio.mbox.chan),
1 YVAL(mbox-vrite-code), ,

2 KREF(digio-.message),
3 %VAL(256)

status = SYS$SETEF (C VAL(64))
status = SYSSWFLOR (C VAL(64), %VAL(en.-nmask))
status = STS$CLREF (V %VL(efn-failure))

IF (status .EQ. %LOC(ss$_wasset)) TEEN

C Failure flag was set - do whatever is necessary

END IF

If the subroutine DIGIOSEND is employed, the code fragment would then read:-

"data.list(data.stazt..ddr) a renlen / 1000.
num-addresses a 1
addr-.index() a 622

25

CALL DIGIOSEND(num-addresses, addr-index, digio.status)
IF (digio.status)

C Operation successful!

ELSE
C Operation failed!

END IF

5.4 Treating Errors

Whenever an error occurs on the parallel data bus, DIGIO sends an error message to
the specific mailbox associated with each process connected to DIGIO (this mailbox
was created in step 6 of the connection process, described in section 5.2, or in the
DIGIOCONNECT routine). Whenever DIGIO sends such a message it notifies each
connected process by setting its error event flag. Bus errors may occur at any time,
and if not read by a connected task, will simply accumulate in each process's error
mailbox. Thus whenever it is important for the process to be aware of possible errors,
the error event flag should be checked and, if set, control transferred to a routine which
reads and decodes the error message. This may be achieved via code such as

status = SYS$CLREF (%VAL(efn.error))
IF (status .EQ. %LOC(ss$_wasset)) THEN

CALL TREATEUROR
END IF

It is important that connected processes check the error event flag after each data
transfer (to ensure the validity of data sent or received), and also before sending
a request message. If a fatal error has occurred since the error event flag was last
checked, any further messages sent to DIGIO will not be treated correctly, and at
worst, DIGIO may never reply to the message, thus hanging the requesting process.

The routine used to read and decode error messages must allow for the possibility that
more than one error message has accumulated in the error mailbox. One approach
to this would be as follows:-

STRUCTURE /iostat..block/
INTEGER*2 status, msg-length
INTEGER*4 sender.pid

END STRUCTURE

RECORD /iostat.block/ mbox-iosb
CHARACTER orror-message*40
EXTERNAL ss$*.endoffile

mbox.iomb.status a I
DO WHILE (aboxziosb.status .NZ. XLOC(ss$_endoffile))

C **ees Read the Mailbox until no more messages

status = STS*QIOW (, XVkL(errzor.boxzchan),
I XVAL (mboxzreadcode).
2 mbox-iosb, .s.
3 %RZRFrror..message),'I 26

S4 %vaL(4o)
IF (mboxiosb.status .EQ. %LOC(ss$_endoffile)) RETUtRN

C *:* Decode the error message and treat accordingly

i END DO

The external variable ss$.endoffile is the system service status code indicating
that there are no more messages in the mailbox.

5.5 Disconnecting From DIGIO

Before a process which has connected to DIGIO exits, it must return the DIGIO data
structures to their original state. This may be done using the following steps.

1. Return this process's entry in requesteorjindex.t able to .FALSE. i.e.

requostor.index-table (requestor.index) = .FALSE.

2. Return this process's entry in data-usage.table to .FALSE. i.e.

data.usagotabl. (data.usage-indox) = .FALSE.

3. Decrement num-requestors.

4. Disassociate the DIGIO common event flag cluster via

status = SYSSDICEFC (%VAL(64))

5. Delete the error mailbox associated with this process:

status = SYS$DELMBX (YVAL(error-mbox-chan))

The process is then free to exit. The subroutine EXIT.DIGIO is provided to perform

the above tasks and is called by

CALL EIITDIGIO

EIITDIGIO is contained in the object library $DISK1: [DATAIN. DIGIO] DIGIOLIB. OLB.

6 CONCLUSIONS

A software interface, DIGIO, has been developed for the new data acquisition system
in the two main wind tunnels at ARL. It has been developed on a DEC MicroVAX II
computer equipped with a DRVIl parallel I/0 interface adapter. Access to the three

registers of the DRV11 adapter is provided from the software by direct mapping of the

Q22-Bus I/0 page to program variables. This method produces a fast and efficient

means of communicating with the parallel data bus via the DRV1I interface.

27
C-

.8.

DIGIO handles all the instrumentation control and data transfer requests from various
data acquisition processes. Up to five processes may access the parallel data bus at
one time, which provides great flexibility for developing data acquisition software.
Details have been provided of the steps which must be included when developing
data acquisition software that needs to access the data bus via DIGIO.

a.. 28

.9

REFERENCES

[1] J. F. Harvey. A Data Acquisition Parallel Bus For Wind Tunnels At ARL.
Flight Mechanics Technical Memorandum 412. Aeronautical Research Labora-
tory, DSTO Australia, August 1989.

[2] DRVII User's Manual. Order number EK-ADV11-OP-002, Digital Equipment
Corporation, Massachusetts USA, April 1977.

[3] S. C. Johnson. Efficient Implementation of Real-Time Programs Under the
VAX/VMS Operating System. NASA Technical Memorandum 86354, 1985.

[4] VAX/VMS System Generation Utility Reference Manual. Order number AA-
Z433A-TE, Digital Equipment Corporation, Massachusetts USA, April 1986.

[51 MicroVMS Programmer's Manual. Order number AI-Z212B-TE, Digital Equip-
ment Corporation, Massachusetts USA, April 1986.

[6] Writing a Device Driver for VAX/VMS. Order number AA-Y511B-TE, Digital
Equipment Corporation, Massachusetts USA, April 1986.

[71 Micro VMS Programming Support Manual. Order number AI-DC87B-TE, Digital
Equipment Corporation, Massachusetts USA, April 1986.

[8] VAX FORTRAN User Manual. Order number AA-D035E-TE, Digital Equip-
ment Corporation, Massachusetts USA, June 1988.

29

.9 i I H

APPENDIX A

MODIFICATIONS TO THE DRV11 CIRCUIT BOARD

A design fault in the circuitry of the DRVll circuit board prevents the interface card
from functioning properly. This has been corrected by modifying the circuitry of the
Integrated Circuit chip at the right hand top corner on the component side of the
board, as shown in Figure A.1. The modifications, as shown in detail in Figure A.2
are:-

* The electrical connection between pins 8 and 9 is broken by cutting the circuit
path between the two pins on the circuit side of the board.

* A jumper is wired between pins 6 and 9 to provide electrical connection between
the two pins.

Location of the Chip
to be modfed

Figure A.1: Schematic layout of the DRVll adapter board.

• • - Jumper Intulled
"between pinseand9

Eleeical wrinixion
aut betwee pins

I

Figure A.2: Enlarged view of the chip to which modifications are made.

30

APPENDIX B

LISTING OF THE INCLUDE FILE DIGIOINCLUDE.FOR

C -------------------------------- ------------------------------ --

C.e*sseseee~s~sseeseseessse STAlR OF DIGI0_IBCLUDE .1O1 .e*es**eeaaeeeee*eeeee.ee
C---

C -------------------------------
C Define Nodule Usage Data
C ------------------------

LOGICAL moduleoTable (0:15) ! True if module electrically
connected to the bus.

CRIRACTe*80 moduleoiame(0:15) ! letmed when module
' interrogated.

C --------------------------------
C Define DIGIO Usage Indicators
C ------------------------------------

INTRGfl*2 numloquostors ! The number of processes
connected to DIGIO. (max 5)

LOGICAL requestorindertable(5)! True if process connected
! with this inder.

LOGICAL data-usagetablo(20), ! True if the 50 location
! block of datalist is in use.

1 dopon ! True if a display sub-process
! is ezecuting.

C -------------------------------------
C Define variable to data arrays
C -------------------------------------

INTRG]R*2 dataList(1000) ! Array to hold bus data

C --
C Define Global Comon Block DIGIOCOMKOI
C --------------------------- --------- ---

COMMON /digiocomon/ nodule-Table, moduleNams,
I num-eoquestors, requostorindex-table.
2 roquestorstartadd, data_%usageotablo,
3 data-List,
5 dspon

C ---
C Meeseeeeeoeeeesee*seese U OF DIGIOINCLUDI.FUI eeeeeeesee ***eee*ee*e**e**

C---

31

APPENDIX C

LISTING OF THE INCLUDE FILE DIGIODEFS.FOR

C---
C~eee~eeessee.eo e~seoee oeees START OF DIGIO.•DEFS .70 e sesFooeeeeesesee eeeee

C ---
C Commonly used variables for conmmuncation with DIGIG
C ---

CUAR&CTR orroraboxame*12,
I orrormss•ge*40,
2 prioritysl

ITEGBI.2 digiomboxchan, ! digio mail box channel
1 error-mbox-chan, ! error mail box channel
2 addr-indox(gO) ! index of BPI bus addresses

INTEGER*4 requestorindox,

1 digio-status,

2 data-start_.addr,

3 high-priorityoefn,

4 low-priority-efn,
5 efnusuccess,

6 ef-nfailur.
7 of�enrror.
8 efn_timr,

9 efnmask

PARAJIETER (low.priority-efn = 65 , m ofn set by requesting process
1 high-priority-efn = 64) ! depending on priority

PAIIAETR (efntimer 95) ! efn of the timer to be set if

;DIGIO does not respond within

the timeout period
CRALCTER digio_mbox_nanme (*)
PARAIETER (digio.mbox-nams = 'digio-mbox')

CRARACTER digiosefnclustere (9)

PARAMETER (digio-efncluster 'dicluster')

C --- ----------------- --

C The following cowman block is shar• d by routines within the

C same process only.

C -- --

COMMON /process_-cmoo/ digiomboz~chaa, errormubox_nmme,

I error.mbox-can, rquostor- indox,
2 data-start addr efusuccess,

3 efn_•8iluze, efnezxror, efn_mask.

4 priority

C ---
C eeoeee eoooee N D 01 DOF IO_.DUUeS. eoeeoeoeeeRee~eeeeeeoeeeso

C--------------------------------------

32

'1_

APPENDIX D

LISTING OF THE SUBROUTINE DR-NIT.FOR

SUROTI dr _int

C ---

C This Subroutine initializes the DRY11 "driver". It does the
C following:-

C
C (1) Naps the page of physical memory containin the DRll's
C registers (part of the Q22 bus or 10-paoe) to the procosses
C virtual memory. References to these locations on the Q22 bus
C may then be made by reference to the array "dr-iopage" which
C is 256 words (512 bytes - 1 page) long, contained in c o an
C block "dr.comon" which is linked to be page aligned via the
C link option file "drinit.opt"

C
C (2) Connects to the DRll's interrupt vectors. Then whenever
C interzrupt A is set, event flag 10 will be raised. and wheneve,
C interrupt 2 is set. the AST routine digioerrorast will be
C executed. This AST routine treats and signals all bus errors.
C
C --

C ----------------------
C Include comons
C ----------------------

INCLUDE ' Edatain .digio]dr-.iLclud .f or/list'

C ----------------------------------
C Define system routines used

C ----------------------------------

EXTENUAL io$_conintread

3ICLUDE ' (secdf) '

Il(rlfO4 status, ! system service routines.
2 sysSassign, ! assign a channel to abox.

7 sys$qio, ! queue an i/o request.
8 sys$cZMpsc ! create a mapped section.
8 lib4signa] signal error.

C-------------------------------------
C Define variables for CRIPSC Call
C -------------- ------------ ---

INTGUIZ 4 dr._in•-(2), ! Two longiords to contain io page address
1 dr.retadr(2) ! Two longwords to contain returned address

rNTUnC4 pfn ! io-page frame number
PAIRIMTEJ (pfn " '100007'!)

INTiEMe4 mask ! Longword to contain section characteristics

- pfn mapping, uriteable

PAkIJIIT (mask a sec4npfaup .01. sec.wrt)

C----------------------------
C Define variables for AS3310 Call

33
$.

C . . .------------------- ------------------

INTGEne2 dra-chan, ! Channel number for interrupt A "device"

1 drb-chan Channel number for interrupt N "device"

C Set up variables for Connect to Interrupt Cell
C

INTEGne2 fcode Function code word

STRUCTURE /flag/
UNION

NAP
Ir•MrGB e2 switches /5/ ! cinmhrepeat or ciununfn
INrG0Ue2 efnum

END MAP
4AP
INTEGZRe4 f lapgord

END RAP
END UNION

END STRUCTURE

RECORD /flag/ dra-flags
RECORD /flag/ drbjlags

11TERNIL digio-orror•o.ast

C eeeeeeeeeoe.CeoE•GIN•JING OF EXECUTABr•IE CODE***e*e*eeeee** ***
C --

C ---------------------------------------
C Sot up variables and map io-pago
C ----------------------------------

dr_•nadr(1) - %LOC(driopago(O))
dr-inadr(2) = %LUC(dr.iopago(2SS)) + 1

status - SYS$CR•PSC(dr.iusdA. dr-retadr, , VkL(mask),
I , 1.%L(pfn), ,)

C ---
C Chock that the mapping was done correctly - input and return
C start and end addresses should be the same
C --

IF(.OT. status) CALL LID*SIGNAL(%A.L(status))
IF((dz-Jiadr(1) .11. dr.retadr(1)) .OR.
1 (dr•jzadr(2) .1n. drlretedr(2))) TUE

TYPE e, I e*ee 10-Page not mopped correctly'

TYPE 10. dr-.inAr(1), dr-i4adr(2)
10 FORMA (I Input addresses are :- ', Z6, 51, Z6)

TYPE 20, drretadr(1), dr.retadr(2)

20 FORJAT (' Returned addresses are - ', ZS, 51, 26)
CALL L13$SIGNAL(%VAL(status))

RED IF

C ---
C Assign both "devices" and got channel numbers
C ------------- --- -----------------------------

34

status - SYSSkSSIGNi(' _G•&O: ', drachan, ,

IF(.- OT. status) CALL L3h$SIGIaL(%VAL(status))

status = STS$ASSIGN('_O0hO:', drb-chan, ,) i
IF(.1OT. status) CALL LIB$SIGNAL(%VAL(status))

C ---.

C Connect to interrupts on both channels
C ---

C ----------- ----------------------------- --- - ---------

C For DAlO: - i•Q A - the done flag - raise ofn 1
C -------------------------------------- - --------------.

fcode - ZLOC(±o$_ConintlRed)
dra-flags.efna = I
status - STSSQIO (% XVAL (dra-chan), %•AL(Ucode),

1 %VAL (dra-flags.flaguord), , ,)

IP(.10T. status) CALL LIB$SIGNAL(ZVAL(status))

C --
C For OEO: - IREQ B - the error flag - go to digio-error-ast

C ---

drbflags.efnum = 0

drb-flags.suitches = 4
status - £TS$Q1O (, 7.IL (drb-cban), %VAL(fcode), , , ,

I XVAL (drb-flags.flagword), digioo-rror-ast, ,val(2))
IF(.- OT. status) CALL LIB$SIGNAL(%VAL(status))

C ----------------------------------
C Complete - return to caller

C ---------------------------

I£TURN

UED

35

APPENDIX E

LIST OF BUS ADDRESSES IN LOW SPEED WIND TUNNEL

C ---
C eeeeeeeeeeeeeeeeeeeeeee START OF BUSADDRESSBS eeeeeeeeeeeeeeeeeeeee

C ------- --

C--
C Definitions of Data Acquisition Parallel Bus addresses
C allocated in LSWT - to be included in DIGIO.FOR
C---

INTJGERe2 addross.list (0:1599)

C -------------------------------------
C Addresses that generate special events
C---------------------------------------

DATA addross~list(O) / '0000'1 / N OP
DATA address.list(l) / 'FFFF'Z / : HASTER RESET
DATA address-list(2) / '1'1 / ! Trigger all Modules

C--
C Addressee relating to the Tunnel Parameter Module
C--

DATA address-list(500) / '8770' I ! V - data value read
DATA addresslist(S01) / '8772'! / ! M - data value road
DATA address-list(602) / '8774'1 / ! Delta P - data value read
DATA address_3.st(503) / '8776'! / ! Ps - data value read
DATA address-lst(804) / '8778'! / ! ? - data value read
DATA address list(S0S) / '877Ail / ! Re - data value read
DATA address-list(SO6) / '8?TF'! / ! T set write
DATA address-list($07) / '87D'IX / ! K set write
DATA address-list(SOS) / '8783'! / ! Clear screen options write
DATA address.list(S09) I '8789'X / ! &aster code options write
DATA address.list(510) / '878F'! / ! Large graphics options write
DATA j4dresslist(511) / '8796' / ! Small gra]hics options write
DATA addxessalist(512) / '8779'X ! Air temperature display write
DATA address.list(513) / '871A7' / Fault/service message write
DATA address*list(614) / '87A'I / Display message (write)
DATA address-list(615) / '7SAD' I ! Write into nmster message buffer
DATA address list(516) / '877B'I / ! Load Ion No ref len (write)

C cee Display control comeands
DATA address.list(620) / '8769'1/ ! Chang* display Node
DATA addressUlist(521) / '8783'1/ ! Clear display
DATA address-list(s22) / '8785'I/ ! Change background rastar
DATA address_-lst($23) / '8T7'8 / ! Select large char display
DATA addressolist(S24) / '8789'L/ ! Select medium char display
DATA Addresslist(525) / '8782'!/ ! Select display on line 13
DATA address..lst(626) / '878D'Z/ ! Select display on line 14 k 15

C see sole data commands
DATA address-.4st(530) / '8791'1/ ! Soed message for display
DATA address-list(S31) / '8793'/ ! Sead first label
DATA address.list(632) / '87961/ ! Send first number
DATA adizesselist(533) / '8797'!/ ! Send second label
DATA address-list(S34) / '47991'/ ! Send second number
DATA address..Ust(636) / '67931'V, Send third label

DATA addresslist(536) / 'S79D'I/ ! Send third number

DATA address-3.ist(540) / '87TFO'/ Input Coot ID for update
DATA addross-list(541) / '87M'il/ ! Write Coos ID fox update
DATA addresslist(542) / '87F2'/ ! Input Cost ID for road

DATA address_.list(543) / '873'!/ I Write Coot ID for read

DATA addresslist(544) / '87AC'I/ R lead Master Message buffer

DATA addresslist(545) / '8TAD'I/ Write Raster Message buffer

C ----------------------------------- --

C Addresses relating to the SG amplifier module

C --

C see Data Value roads of all channels

DATA address.list(100) / '8169'1 / ! Trigger conversion on all ADC's

DATA address.list(101) / '8184'1 / ! ead ADC conversion buffer

DATA address-list(102) / '8170'1 / ! load ADC channel I
DATA addrossalist(103) / '8172'1 / ! Read ADC channel 2

DATA addresslist(104) / '8174'! / ! lead ADC channel 3

DATA address.list(105) / '8176'1 / ! Read ADC channel 4
DATA addressUlist(106) / '8178'! / ! lead ADC channel 5
DATA Address-list(107) I '817A'! / R lead ADC channel 6

C Rec leeds for channels in pairs
DATA address-lUst(108) / '8171'! ! Trigger Channels 1 & 2

DATA addresa.list(109) / '81DO'! / R lead ADC channel I status buffer

DATA address_-ist(110) / '8170'1 ! Read Channel I
DATA address-list(111) / '80D2'1 1 ! Read ADC channel 2 status buffer

DATA addresslist(112) / '8172'Z / R lead Channel 2

DATA addrcesslst(113) / '8175'! / ! Trigger Channels 3 & 4

DATA addressUlst(114) / '81D4'! / ! Read ADC channel 3 status buffer

DATA address.list(115) / '68174' / ! Read Channel 3
DATA address-3ist(116) / '81D1'! / ! lead ADC channel 4 status buffer

DATA addresslist(117) / '8176'! / ! lead Channel 4

DATA addresslst(118) / '8177'! / ! Trigger Channels 5 & 6
DATA address-.Ust(119) / '81D8'Z / ! lead ADC channel S status buffer

DATA address.list(120) / '81786' / ! Read Channel S
DATA address list(121) I '81DA'! / ! lead ADC channel 6 status butfer

DATA addross-Ust(122) / '817A'Z / ! lead Channel 6

C *00 Calibration Relay Operations

DATA address.List(123) / '8170' / ! Read calibration relay status
DATA address A-st(124) / '617'1I / ! Turn Calibration Relay '01'

DATA address-list(12S) / '6181'! / ! Tun Calibration Relay 'OFF'

C----------------------------------

C Addresses relating to the Inclinometer module

C---- ---------------

DATA addless.-sst(150) / ISA63'1 / Trigger conversion on all ADC

DATA address-list(ISI) / 1SATO'1 / ! Read ADC 1. channel 1 - I

DATA addressj-ist(162) / '8A82'1 / R load ADC 1, chanel 2 - I

DATA address-list(163) / 80A74'1 / ! Read ADC 2, channel I - I
DATA addross-.lst(154) / 18A76'1 / I load ANC 2, channel 2 - top

DATA addroes_-.st(155) / 'SA8111 / I Trigger ANC 1
DATA address-list(C) / 'gAlS'! / I Trigger ADC 2

DATA addre•_jrAst(1S7) / 'SAU7'9 / I lead loll as caL9SlaLed

DATA addreselist(iS6) / '8ATA'! / I lead Pitch as ealculated
DATA a8ddeso.list(16S) / '8AC'! / I load required loll Offset

DATA a&diross.lit(160) / 'SA1I'1 / I load roqutred Pitck Offset

17

DATA addresslist(161) / '8A7D'! / ! Write Cal. Roll Offset
DATA addresslist(162) / '8A7F'X / ! Write Cal. Pitch Offset
DATA addzess-list(163) / '8A•A'X / Model Alignment
"DATA address-list(164) / '8AAD'! I ! Select qflex Transducer

: C

C Addresses relating to the Actuator module
C -----------------------------------

DATA address.-ist(800) / '8369'! / Trigger simultaneous move
DATA address-list(801) / 'SeDI'I / ! Manual drive - channel
DATA Aaresso-ist(802) / '8RD3'I / ! Manual drive - move
DATA addros._1list (803) / 8DS'X ! Manual drive - exit
DATA -dAress-list(804) / '8366'! / R lead calibration coeff.
DATA addressal•st(805) / '836O'/ ! Read error code

DATA address.list(806) / '8361'1 / ! Reset error status
DATA adAdesslist(8OT) / '8365'X / ! Clear status/error buffer
DATA addess .lst(808) I '8367'! ! Clear error & lag bits
DATA address-Iist(809) / 'SBDO'! / R lead Motor Status Register

C see Channel 1
DATA address-iist(810) / '8BTO'X / ! LVDT Reading to master
DATA addeoss.list(811) / '8B71'! / ! Angle to Move to
DATA addressljist(812) / '8B72'1 / ! Current angle
DATA address-Ust(813) / '8373'1 / ! Set upper limit
DATA addroesslist(814) / '8B74'1 / ! Read upper limit
DATA addAeasslist(815) / '8375'! / ! Set lower limit
DATA address-list(816) I '8B761' ! Read lower limit
DATA addressUst(817) / '8B77'X / ! Set Offset angle

C see Channel 2
DATA addressUlist(820) / '8B78'! / ! LVDT leading to mster
DATA addresslist(821) / 'S379'! / I Angle to Move to
DATA addresaUlist(822) / '837A'I / ! Current angle
DATA address-list(823) / '83T3'X / ! Set upper limit
DATA addres_-list(824) / '8B7C'X ! ! Read upper limit
DATA addressUlist(826) / '6BTD'X ! ! Set lower limit
DATA address"list(826) / '8371'! ! oead lower limit
DATA address-list(827) / '837?'X / ! Set Offset angle

C ee Channel 3
DATA addroes•Ust(830) / '3B6'! / ! LVDT loading to master
DATA address.list(831) / '8361'! ! Angle to Move to
DATA address._list(832) / '1828' / 1 Current angle
DATA address.list(S33) / '8383'! / 1 Set upper limit
DATA address•l•st(834) / '8384'!I R Read upper limit
DATA addresse.lst(836) / '6366'! / I Set lower limit
DATA addressUlit(836) I '8B86' /1 Read lower limit
DATA address.list(837) / '83871' / Set Offset angle

C see Chasne! 4
DATA addresslist(840) / 1'3881' / ! LVD? Reading to mater
DATA address.list(841) I '3389'! / I Angle to Move to
DATA addzess..Ust(842) / '84A'I / I Current a"Il
DATA addzess-liat(643) / '83$=' I I Set pper limdt
DATA &idres.l•st(S44) / 'SSCI'I / R Rad Pper limit
DATA addres_-List(M45) / 'il8D'X / S Set levm linit

DATA adiroee.list(k4) '33831 ' I t lead lewer linit
DATA adbees.Ls- t(847) / 'U V'Z / I Ret Offset agleo

C ece Chemsel 9

38

DATA addrasse.ist(850) / '890'X / LVDT Reading to master

DATA addresselist(851) / '8B91'X / ! Angle to Novo to

DATA addross.list(852) I '8392'1 / ! Current angle

DATA address-list(8
5 3) / '8B93'1 / ! Set upper limit

DATA address.list(854) / '8894'! / Re"ad upper limit

DATA address-list(855) / '8B95'! I ! Set lower Limit

DATA address-list(856) / '8396'1 / Read lower limit

DATA address-list(857) / '8B97'! / ! Set Offset angle

C ee Channel 6

DATA address-3list(860) / '8B98'! / I LIR Reading to master

DATA addressalist(861) / 'SB99'! / Angle to Nove to

DATA address.list(862) / M39A'X / ! Current angle

DATA address-list(863) / '8D93'! / ' Set upper limit

DATA adsdress.list(8S4) / '8•9C'! / l Read upper limit

DATA address.list(865) / 'SlID'! / ! Set lower limit

DATA addAeasslist(866) / 'eB9D'1 / Read lower limit

DATA address list(867) / '839?'X / ! Set Offset angle

C eec Channel 7
DATA addr.ess-list(870) ,8BAOX I LID! leading to master

DATA address.list(871) / 'SBIAI' / ! Angle to Nove to

DATA Address list(872) / '8BA212 / X Current angle

DATA address.list(873) / ,eBA3'! / ! Set upper limit

DATA addresslist(8?4) / '8BA4'T / ead upper limit

DATA aeddress 1st(85) / 'SBAS'! / ! Set lower limit

DATA address. lst(876) / '8BA6'! / Read lower limit

DATA addressleist(877) / '8BAT'! / ! Set Offset angle

C ee Channel 9
DATA address list(880) I •'SAA'! I ! LIDT Reading to master

DATA addr-oss.14st(881) / 'SeBAS' I ! Angle to Kove to

DATA address-Iist(802) / 'eA'AI! / ! Current angle

DATA address.list(883) / '8BAS' I ! Set upper limit

DATA address-list(384) I 'SBAC'Z / gRead upper limit

DATA addreessliat(885) / 'SIADPX / ' Set lower limit

DATA addressa14st(806) / 'SlAB' / Read lower limit

DATA addressalist(887) I '53*?'X / I Set Offset angle

C Cee Channel 9

DATA address.list(390) I O'B330' / I LIDT Reading to master

DATA address list(891) I 'S3311' / ! Angle to Move to

DATA addressUlist(892) / '31B2'! / ! Current angle

DATA address-lUst(893) / 'eBB313 / ! Set upper Limit

DATA address_.list(894) I '3334'! / ! Read upper limit

DATA addreselist(895) / '333!'! I ! Set lower limit

DATA address-list(896) / '3336'! / Read lower limit

DATA addres...Ust(S97) I '33T3' / ! Set Offset angle

39

C e Channel lO

DATA address 4ist(900) / '818' / ! LVDT Reading to master
DATA addrossUist(901) I '8339'X / ! Angle to Hove to
DATA addressalist(902) / '8UA'I / ! Current angle
DATA address-list(903) / '8333'! / ! Set upper limit

DATA -addeA .. lst(904) I 'SNIC'/! R ead upper limit
DATA address.list(905) / '182D'! / ! Set lower limit
DATA addresslist(906) / '8DBM'! / ! Read lower limit
DATA address.list(907) / 'e833'X / ! Set Offset angle

C *o* Channel 11
DATA add*ss-list(910) I 'SBCO'! / ! LVDT leading to master
DATA ad.ress-list(911) / ISBC11X / ! Angle to Move to

DATA addro"-Ulist(912) I '8BC2'X / ! Current aagle
DATA addreao-list(913) / '5BC3'X / ! Set upper Limit
DATA addross-list(914) / '8XCA'I / ! lead upper limit

DATA address.list(915) I 'eBCs'! / ! Set lower limit
DATA addzess-list(916) I '8IC6E' / ! Read lower limit
DATA addro"slat(917) I '8BCT?' I ! Sot Offset angle

C ee Channel 12
DATA addross-list(920) / 'SBCS'! / 1 LIDT leading to master

DATA address-list(921) / 'UBC9'1 ! Angle to Nove to
DATA address-list(922) / 'SBCA'I ! Current angle
DATA addreoss-list(923) / 'SBCBR' / ! Set upper Limit

DATA addreslist(924) / '8BCC'! / R load upper limit

DATA address_.lst(925) / '8BCD'X ! Set lower limit
DATA addros._Ust(926) / 'SIBCK' I ! lead lower limit
DATA addr•oss.•it(927) / ISBCF'I / ! Set Offset angle

C we' Actuator Calibration Coefficients
DATA address_-Ust(930) / 'IDBI' Turn Manual Pulse Mode ON
DATA address-Ust(931) / 'BBDD'K / ! Turn Manual Pulse Mode OFF

C--------------- 4------------------------
C INeeeeaeeeeeeceRD OF IUS-ADDRIISSU eReeeSa~eeeee
C --- - ----------------- --

40

APPENDIX F

LIST OF BUS ADDRESSES IN VARIABLE PRESSURE
TRANSONIC WIND TUNNEL

C--------------------------------- ---------------------------- -

C eeeeeeeeeseeeeeseeeee START OF BUSADDRESSWS ee e eeee oeeee
C ------------------------------------ ------- ----------- -----

C---------------------------------- -----------

C Definitions of Data Acquisition Parallel Bus addresses

C - to be included in DIGIO.FOR
C ---

IUNTEGOR2 address-list (0:1599)

C----------------------------------
C Addresses that generate special events
C--------- --------------

DATA address-list(O) / '0000' I ! lOP
DATA address-list(1) / 'FFFF'! / M RASTER RESRT
DATA addresslist(2) / '1II I ! Trigger all Modules

C--------------------
C Addresses relating to the Tunnel Parameter Module
C ---

DATA address_]Ust(500) / '8570'X / ! T - data value read
DATA addross-list(501) / '8572'1 / ! M - data value road
DATA address-list(502) / '8574'1 / ! I - data value read
DATA add essiist(503) / '8576'! / ! P - data value read

DATA addzess-list(504) / '8578'1 / ! T - data value read
DATA Addreso-list(505) / '857A'T I ! Re - data value read
DATA address-list(506) / '8571'1 / ! V set write
DATA addross-list(607) / '8573'! / ! M got write
DATA address-list(S08) / '85683' / ! Clear screen options write
DATA addres_-list(609) / '3535'! / ! Raster code options write
DATA addresslist(510) / '3587'! / ! Large graphics options write

DATA address-list(511) / '8589'X I ! Small graphics options write
DATA address.list(512) / '858B'! I ! Air temperature display write

DATA address.list(513) / '8895'I / ! Fault/service message write

DATA addresseUst(614) / '858D'! / ! Display Message (write)

DATA address.list(515) / '8691'! / W Write into master message buffer

DATA address-list(516) I '8575'! / ! Load Ken So ref lea (write)

C ees Display control comands
DATA addresslist(520) / '8569'X/ ! Change display Node

DATA address list(521) / '8583'!/ ! Clear display
DATA addzess-ist(522) / '8585'6/ ! Change background rastar

DATA addresslist(523) / '8587'X/ ! Select large char display
DATA addresseUst(624) / '8589'I/ ! Select modium cha display
DATA address-list(525) / '8S83'X/ I Select display on li•e 13

DATA address-list(526) / '8S3D'X/ ! Select display em line 14 1 15

C see Send data comands

DATA addresa.list(530) / '86S1'!/ I Send message for display
DATA addroesalist(S31) / '8593'I/ ! Send first label
DATA address.list(532) / '065961/ ! Sead first number

DATA addres.last(S33) / '8597'I/ I Send second label
DATA addzess.Ulst(634) 4 'S99'X1/ ! Send second amber

41

DATA address.list(535) / 1859B'!/ ' Send third label
"DATA address-ist(536) / '859D'!/ ! Send third number

DATA addressl-ist(540) / '856C'X/ ! Input Coeff ID for update
DATA address_-ist(541) / '856D'I/ ! Write Coeff ID for update
DATA addresexs-st(542) / 'e56EX'/ ! Input Coeff ID for read
DATA address3.ist(543) / '856'IX/ ! Write Coeff ID for read
DATA addressaliet(544) / '8690'2/ ! Read Master Message Buffer

C --- ------------- -- ---------------

C Addressee relating to the SG amplifier module
C------------------------------------ -- -

C see Data Value reads of all channels
DATA addroesslist(100) / '8169'! / ! Trigger conversion on all IDC's
DATA address Jist(101) / '8114'1 / R ead ADC conversion buffsr
DATA address-list(102) / '8170'1 / R ead ADC channel I
DATA address-list(103) / '8172'X / R lead ADC channel 2
DATA addresselist(104) / '81741X R lead ADC channel 3
DATA address.list(105) / '8176'1 R e ead ADC channel 4
DATA addresselist(106) / '8178'! / ! lead ADC channel 5
DATA address-list(107) / '817A11 R o lead ADC channel 6

C see Reads for channels in pairs
DATA addbrose-1st(108) / '8171'X / : Trigger Channels 1 & 2
DATA addresselist(109) / '81DO'l / R lead ADC channel I status buffer

DATA address-list(110) / '8170'1 / R Read Channel 1
DATA addroesslist(111) / 181D2'1 / R lead ADC channel 2 status buffer
DATA address_.ist(112) / '8172'! R lead Channel 2
DATA addresselist(113) / '8175'1 / ! Trigger Channels 3 & 4
DATA addAesslist(114) / '81D4'l I I Read IDC channel 3 status buffer
DATA address-list(115) / '8174'X / R lead Channel 3
DATA addross_-st(116) / '81D6'I X Read ADC channel 4 status buffer
DATA address-list(117) / '8176'1 / ! Read Channel 4
DATA address-list(118) / '8177'! / ! Trigger Channels 5 & 6
DATA addresselist(119) / '81DS'X / ! lead ADC channel S status buffer
DATA addresslist(120) / '8178'! / I Road Channel 5
DATA addresslist(121) I 'SIDL'! / ! lead ADC channel 6 status buffer
DATA address-.ist(122) / '8171'! / ! Read Channel 6

C eo Calibration Relay Operations
DATA addr*ss_-5et(123) / '81FO1 / ! Read calibration relay status
DATA address..lst(124) / '81F11X / ! Turn Calibration Relay '10'
DATA addresslist(125) / '81F11' / ! Turn Calibration Relay 'OFF'

42

.9

C -
C Add~resses relating to the Scani-valve zodule

C -- -

DATA addressjlist(300) / '8361'1 / ITrigger data acquisition

DATA addreass-list(301) / '8364'1 / IRead status of buffer

DATA address- list(302) / '8365'1 / IClear all buffers

DATA address,.list (303) / '836C 'I / IRe"d selected scani-?alve

DATA address-list(304) / '8369-'X / ISet power setting&

DATA address-list(305) / '8363'1 / I Set operation mode code

C ecCalibration Relay Operations

DATA address list(308) / '83F0'1 / IRead calibration relay status

DATA addrous-s.. t(309) / '8371'! / IToggle Calibration Relay ON/OFF

C ecTrigger ADC read on scani-valve

DATA address-.list(311) I'37'!IX / Read Scani-valve I

DATA address. list(312) / 8373'X / IRead Scaai-valve 2

DATA address-list(313) / 8375'! / 'Read Scani-valve 3

DATA address-list(314) I 8377'1!/ IRead Scani-valve 4

DATA address-.list(315) / 8379'! / IRead Scani-valve 5

DATA address-list(316) / 837B'X / IRead Scani-valve 6

C ecRead ADC cards of all channels

DATA address-.list(321) / '8370'! / 'Read Scani-valve 1

DATA addroessUist(322) / '8372'! / Read Sceni-valve 2

DATA address-list(323) / 8374'! / IRea" Scaid-valve 3

DATA addresslist(324) 1 8376-'! / 'Read Scani-valwe 4

DATA addrest..list(325) / 8378'! / IRead Scani-valv* 5

DATA addrosaJlst (326) / 837AII / Read Scani-valve 6

C ceSet number of selected ports on scanivalve

DATA address..list(331) / 8391'! / 'Scani-valve 1

DATA address-list(332) / 8393'! / Scani-valve 2

DATA address-list(333) / 8395'! / Scani-valve 3

DATA address-list(334) / '397'! / IScani-valve 4

DATA address-liat(335) 1 8399'! / Scan~i-valv* 5

DATA addresslist(336) I 8393'! / IScani-valve 6

C ecRead unumber of selected ports on sacnivalve

DATA address..list(341) / '8390'! / 1 Scani-valve I

DATA address-list(342) / '8392'! / Scani-valve 2

DATA addressj-ist(343) / '8394'! / IScani-valve 3

DATA address-list(344) / '8396'! / IScani-valve 4

DATA address..list(346) / '8398'! / 'Scanti-valve 5

DATA addreass-list(346) / '839AI! / IScani-valve 6

C *ee set the currently selected Port OnL scanivalve

DATA addrosselint(361) / 839D'X/ Scasi-valve 1

DATA address-list(362) / 8397'!/ Scani-valve 2

DATA address-.list(353) / 83A1'!/X Scani-valve 3

DATA address..list(364) / 83011 / ScanF--valve 4

DATA address-list(355) / 83ASIX/ Scani-valwe 6

DATA address list(366) 1 8307' 1 Scani-walve 6

C eeRead the currently selected port on scanivalve

DATA address-.lit(361) 19'39CII/ Scami-valve I

DATA address-.Ust(382) / '393'!/1 Scaui-valve 2

DATA address-Ust(363) / '3A0'!/ Scami-valve 3

DATA address..it (364) 19'3A211/ Scami-valve 4

DATA address-list(36S) / '3A4' I Scani-valve 6

DATA addross-.list(36) '8AISA' Seami-valve 6

43

C s.Sot the settling time used an sceanivalve (in as)
DATA address_.list(371) / '8319'1 / Scani-velve I
DATA addr~ss-.list(372) / 831B'X / 'Scani-valve 2
DATA address..list(373) / 1831D'X / IScani-valve 3
DATA addreasslist (374) / 183AL'IX / !Scani-valve 4
DATA address-list(376) / '83B11 /II Scamni-valve b

DATA address-..ist(376) / '83B3'I / Scani-valve 6

C aeRead the settling tine used on scazaivalve
DATA addrossjiat(381) / 183A'IX / Scani-valve 1
DATA address-list(M8) / '83AA'1 / Scani-valve 2
DATA address-lint(383) / 1831CII / IScani-valve 3
DATA ad~drese-list(384) / '83AEIX / 'Scani-valve 4
DATA addxess-list(385) / '83011' / !Scani-valve 5
DATA address-list(386) / 183B21I / IScani-valve 6

C---*
C s.aeeeeeeeeee ENKD OF BUS-ADDRESSES **ee..e~~~eee

C --

44

I---- Master Computer

Input/Output Cables from DRV1 I

Bus
Terminator BJ-directional Differentiul Parallel Bus (BDP)

F -I
Slave Moddle 1 Slave Module 2 . Slave Module n

Figure 1: Configuration of the Wind Tunnel Data Acquisition System.

Is 7 a S 0

RQUI ST A WT EM5 CS ,I
~EAD tL'~1W-0A OWY) (MED&MMTE W-wv

Orr DBA C81O
WRA~WMMl (EADIMM

Figure 2: The word format of DRVI 1 Control Status Register.

45

DISTRIBUTION

AUSTRALIA

Department of Defence

Defence Central
Chief Defence Scientist 1
,,S Science Corporate Management shared copy
FAS Science Policy
Director Departmental Publications
Counsellor Defence Science, London (Doc Data sheet only)
Counsellor Defence Science, Washington (Doc Data sheet only)
Scientific Adviser Defence Central
OIC TRS Defence Central Library
Document Exchange Centre, DSTIC (8 copies)
Defence Intelligence Organisation
Librarian Defence Signals Directorate, (Doc Data sheet only)

Aeronautical Research Laboratory
Director
Library
Chief Air Operations Division
Authors: B.D. Fairley

S.S.W. Lam
N. Matheson (3 copies)
M. Glaister
L. MacLaren
Y. Link
P. Malone (3 copies)

Materials Research Laboratory
Director/Library

Defence Science & Technology Organisation - Salisbury
Library

Navy Office
Navy Scientific Adviser (3 copies Doc Data sheet only)
Naval Support Command

Superintendent, Naval Aircraft Logistics
Directorate of Aviation Projects - Navy

ArmyOffic
Scientific Adviser - Army (Doc Data sheet only)
Engineering Development Establishment Library
US Army Research, Development and Standardisation Group (3 copies)

a,

&r_ Force Office

Air Force Scientific Adviser (Doc Data sheet only)
Aircraft Research and Development Unit

Scientific Flight Group
Library

OIC ATF, ATS, RAAFSTT, WAGGA (2 copies)

HQ ADF
Director General Force Development (Air)

Department of Transport & Communication
Library

Statutory and State Authorities and Industry
Aero-Space Technologies Australia, Systems Division Librarian
ASTA Engineering, Document Control Office
Civil Aviation Authority
Hawker de Havilland Aust Pty Ltd, Victoria, Library
Hawker de Havilland Aust Pty Ltd, Bankstown, Library
Australian Nuclear Science and Technology Organisation
Gas & Fuel Corporation of Vic., Manager Scientific Services
SEC of Vic., Herman Research Laboratory, Library

Universities and Colleges
Adelaide

Barr Smith Library

Flinders
Library

LaTrobe
Library

Melbourne
Engineering Library

Monash
Hargrave Library

Newcastle
Library

New England
Library

Sydney
Engineering Library

NSW

Library, Australian Defence Force Academy

It.

Queensland
Library

Tasmania
Engineering Library

Western Australia
Library

RMIT
Library

University College of the Northern Territory
Library

INDIA
CAARC Coordinator Aerodynamics

UNITED KINGDOM
CAARC Coordinator Aerodynamics

UNITED STATES OF AMERICA
NASA Scientific and Technical Information Facility

SPARES (4 COPIES)

TOTAL (70 COPIES)

AL 149 DEPARTIENT OF DEFENCE PAGE CLASSUIICA-TON

UNCLASSIFIED

DOCUMENT CONTROL DATA PRIVACY

i. AR NL.RBIR Ih ESTABLISHMENT NUMBER 2. DOC2ENT DATE 3. TASK NUMBER

AR-007-135 ARL-TR-14 MARCH 1993 DST 92/459

IL TITLE 5, SECURrrYk.CLASIAnoN 6. NO. PACES
(PLACE APPROPRIATE ASSiFICATION

A SOFTWARE INTERFACE FOR THE ARL I OX(S) 1. SECRET-(S).CONF (C) 48
WIND TUNNEL DATA ACQUISITION RICrED(R). UNCLASS W1 WM).

SYSTEM

8
DOCUMENT mTrn Azrrucr

s. AUvmOs) 9. DOWNGRADIN4DELtOTING !NS-RUCToNS

B.D. FAIRLIE Not applicable.
S.S.W. LAM
1U. CORPORATE AUT4OR AND ADDRESS II, OwFIZIlPOSMON RMPONSMLE FOR:

AERONAUTICAL RESEARCH LABORATORY DSTO
SPONSOR

AIR OPERATIONS DIVISION

506 LORIMER STREET SECURITY

FISHERMENS BEND VIC 3207
DOWNGADING

CAOD
APPROVAL

12. SECONDARY DISTRIBUTION (UP lIR DOCUMENT)

Approved for public release.
OVERSEAS ENQUIRIES OUtSIDE STATD LIMITATIONS SHOMLD BE REFERREDTIROUGI OSC•. ADM•INSTATRA SERVICES BRACYL DEPARTMENT OF
DEFENCZI. AZAC PARK WEST OFFICES ACT 21,

13. TIVS DOCUMENT MAY BE ANNOUNCED IN CATALOGUES AND AWARENESS SERVICES AVABAX•.E

No limitations.

13b. CITATION FOR OTIR PURPOSES (M. CASUAL

ANNOUNCEMESNrt) MAY BE j] UNRESTCD OR j] AS FOR 13.

14. DLSCRVTORS 15. DISCAT SUIECF

Transonic wind annels Software tool support interfaces CAEGORIES

Low speed wind tunnels Computer programs 010101
Aeronautical Research Laboratory
Data acuisition
1d ARS7WACr
A software interface for the data acquisition system has been developed on a MicroVAX 11 computer for the
Transonic and Low Speed wind tunnels at ARL. The software is responsible for handling instrumentation
control and data transfer requests between the data acquisition software and the parallel data bus via a
DRVII parallel 1/0 interface adapter. Access to the DRVI) registers is effected by direct mapping of the
Q22-Bus 1/0 page to program variables, giving fast and efficient transfer of data to and from the parallel
data bus. Up to five processes may access the parallel data bus at one time via this software interface thus
allowing great flexibility in the development of data acquisition software. This report details the necessary
programming steps which must be included in data acquisition software to access the parallel data bus via
the software interface.

$.

PAGE aA•S•TICATION

UNCLASSIFIED
PRIVACY MARID4G

TWIS PAGE IS TO BE USED TO RECORD UIFORMATION WI-i01 IS REQUIRED BY T7M ESTABILZO"T POR IT OWN USX 531 WHXM WIL NOr BE ADDED 10

TIE DIEIS DATA UNLESS SPECIFICALLY REQUESTED.

I& ABS1RACt (CoNT).

17. TI4PRIN

AERONAUTICAL RESEARCH LABORATORY, MELBOURNE

19. Docaum' SERIES AND NUMBEX 19. WA NUMBER 2D. TYPE OF REPORT AMN PEROD COVERED

Technical Report 14 54 527F

21. COMHISl PROGRAMS USED

22. ESTABLSIJANT PEPI EFS)

25. ADOfTIKNAL WIFORMATIOWN (AS JRQUIWR)

